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We introduce a technique to study double parton scattering (DPS) in the color-glass-condensate (CGC)
approach. We show that the cross section of the DPS in the CGC approach is calculable in terms of new
nonperturbative objects, generalized double transverse momentum-dependent parton distribution
(2GTMD) functions. We investigate the production of pairs of prompt photons from two partons in
the projectile hadron in high-energy proton-nucleus collisions. We show that even for independent partons
in the projectile, the prompt photon correlation function exhibits Hanbury Brown and Twiss (HBT)
correlations. The width of the HBT peak is controlled by the transverse distance between the partons of the
pair, which is of the order of the proton size. Thus, the HBT measurements in two-particle production such
as prompt photon pairs provide useful information about the nonperturbative 2GTMDs.
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I. INTRODUCTION

The nature of long range rapidity correlations in hadron
production observed in proton-proton (p-p) and proton
(deuteron)-nucleus (p-A) collisions at the LHC and RHIC
has been a subject of intense investigation during the past
several years [1–5]. The big question to be answered is
whether these correlations arise due to strong collective
effects in final state interactions, or due to quasicollectivity
present in the initial state wave function which is imprinted
on the spectrum of produced particles.
Since first principle analysis of hadron production in a

dense environment is very hard, it makes sense to look at
simpler probes of this system. Prompt photons have been
one such probe that has been used to probe the putative
quark-gluon-plasma state created at the early stages of
heavy ion collisions [6–16]. Since photon interactions are
weak, the correlations between emitted photons, if such
exist, would most certainly probe the structure of the initial
state alone, and it is interesting to see what can be learned
from it. This was the motivation of our previous papers on
the subject [17]. In Ref. [17] we considered the production
of two photons from the same quark in reaction of the type
(shown in Fig. 1)

qþ A → γðk1Þ þ γðk2Þ þ jetðqÞ þ X ð1Þ

and have found an interesting correlated structure albeit
short range in rapidity compared to the dihadron correla-
tions. Here, we consider the production of two photons
from two valence quarks, i.e. the process of the type (shown
in Fig. 2)

qþ qþ A → γðk1Þ þ γðk2Þ þ jetðqÞ þ jetðq0Þ þ X: ð2Þ

Naively one might think that such an independent emission
process does not lead to correlations in double photon
production. However, this is not necessarily the case. Since
photons are bosons, upon further reflection one expects to
see the Hanbury Brown and Twiss (HBT) correlations
between photons emitted from two independent sources.
Such correlations involving gluons were discussed in the
context of hadron production in p-A scattering in the color-
glass-condensate (CGC) approach in [18]. In principle they
result in a peak for production of same sign transverse
momentum pairs, with the radius of correlation in momen-
tum space given by the inverse gluonic radius of the proton.
The hadron HBT signal is, however, rather fragile and is
easily masked by final state effects. One expects the photon
HBT to be much more resilient. One of the main purposes
in this paper is to qualitatively study this effect.

FIG. 1. The diagrams contributing to two prompt photons
production from one quark in the background of the CGC field.
The shaded box (the CGC shock wave) denotes the interaction of
a quark to all orders with the background field via multiple gluon
exchanges.
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Although our main interest and explicit calculations are
geared toward diphoton production, the approach itself is
more general and can be applied to any process of the double
parton scattering (DPS) type [given in Eq. (4) below].
The topic of multiparton interactions is one of the most

important focal points of studying the multiparticle corre-
lations in perturbative quantum chromodynamics (pQCD).
In the CGC approach, at leading order, the so-called single
parton scattering (SPS) processes in the pQCD framework
correspond to a single parton scattering to the CGC shock
wave. The CGC shock wave includes the interaction of a
parton to all orders with the background color field of the
target. Therefore, in the CGC approach, the corresponding
SPS contribution for two-particle production is obtained by
considering the following process:

partonþ A → particleðk1Þ þ particleðk2Þ þ X: ð3Þ

Effects of saturation on dihadron correlations originating
from SPS have been studied in [19]. Potentially “richer”
sources of correlations are processes where two partons in
one projectile hadron collide with the CGC shock wave.
Such a process in the language of pQCD is the so-called
DPS,

partonþ partonþ A → particleðk1Þ þ particleðk2Þ þ X:

ð4Þ

In the CGC framework processes where two observed
particles originate from different sources of the color field
were studied in the soft limit in Refs. [18,20–27]. While for
SPS, the CGC and pQCD approaches are conveniently
bridged with the help of the hybrid formalism [28], such a
connection has not been made for DPS so far.
In the present paper we extend the hybrid formalism

to include the DPS in the CGC approach. We show that
the cross section of the DPS in the CGC is calculable
in terms of new nonperturbative objects, the generalized
double transverse momentum-dependent parton distribu-
tion (2GTMD) functions. In the context of the collinear
factorization, a similar object, the so-called generalized
double parton distribution (2GPD), appears in studies of the
DPS [29]. We propose that the properties of the 2GTMDs

can be studied in the small-x kinematics within this hybrid
CGC approach. In particular, we show that the diphoton
HBT correlations are naturally expressed in terms of the
diquark 2GTMDs. We also point out that dihadron corre-
lations at high energy (in the forward direction) should be
sensitive to digluon 2GTMD, and such processes should be
included as corrections to the calculations of Ref. [19].
We will be working within a variant of the “hybrid”

approximation [28] which is appropriate for forward
photon production. In the hybrid CGC approach, we
assume that the small-x gluon modes of the nucleus have
a large occupation number so that the target nucleus can be
described in terms of a classical color field. This should be
a good approximation for a large enough nucleus at high
energy.1 This color field emerges from the classical Yang-
Mills equationwith a source term provided by faster partons.
The renormalization group equations which govern the
separation between the soft and the hard models are then
given by the nonlinear Jalilian-Marian, Iancu, McLerran,
Weigert, Leonidov, Kovner (JIMWLK) evolution equations
[45] (see below). We further assume that the projectile
proton is in the dilute regime and can be described in an
ordinary perturbative approach. The processEq. (4) involves
double parton scattering, and therefore standard collinear
parton distribution functions are not sufficient to character-
ize the incoming proton state. We will therefore need to
model the proton structure in a slightly more refined way.
In the following wewill derive the diphoton cross section

starting from some simple and intuitive assumptions about
the wave function of the two incoming quarks inside the
projectile hadron. We show that at large Nc within the CGC
approach, the cross section is determined by the dipole
scattering amplitude. We also show that within the standard
collinear factorization approach the HBT peak has zero
width. This is not at all surprising, since the width is
expected to be of the order of inverse proton size, while
in collinear factorization this size is effectively infinite. Thus
any realistic study requires us to go beyond the standard
collinear factorization. Since the basic process we consider
involves double parton scattering, our final expressions
require double parton distributions. These objects are not
well determined experimentally, and therefore we do not
attempt detailed quantitative predictions. Instead we limit
ourselves to qualitative analysis based on a simple model of
the initial wave function.We show that thewidth of the HBT
peak is indeed given by the inverse size of this distribution in
coordinate space. Therefore, the HBT measurements for
two-particle production such as prompt photon pairs provide
useful information about the nonperturbative 2GTMDs.

FIG. 2. The diagrams contributing to production of two prompt
photons from two quarks in the background of the CGC field. The
notation is the same as in Fig. 1.

1Note that there is growing evidence that supports the idea that
a proton at very high energy and especially at very forward
rapidity can be considered as a dense system as well, and
therefore in principle the same approximation also applies to
high energy p-p scatterings; see for example Refs. [30–44].
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This paper is organized as follows: In Sec. II, we first
provide a concise description of the theoretical frame-
work for calculating the DPS contribution in the CGC
approach. As an example, we focus on calculating
the cross section of a pair of prompt photons and a
pair of jets in high-energy p-A collisions. In Sec. III, we
present our results for inclusive prompt diphoton pro-
duction obtained from the DPS contribution in the CGC
approach. We will also discuss Hanbury Brown and
Twiss correlations for diphoton production in high-
energy p-p and p-A collisions. We summarize our main
results in Sec. IV.

II. SEMI-INCLUSIVE DIPHOTON+DIJET
PRODUCTION IN PROTON-NUCLEUS

COLLISIONS

In this section, we present the basics of computation of
the cross section for the process given in Eq. (4). Although
our formulation here is valid for the general production
given in Eq. (4), in the following we focus on a case where
two produced particles are prompt photons,

qðp1Þ þ qðp2Þ þ A

→ γðk1Þ þ γðk2Þ þ jetðqÞ þ jetðq0Þ þ X: ð5Þ

We consider the leading order approximation in dilute-
dense collisions at forward rapidity, for example in proton-
proton or/and in proton-nucleus collisions. In this setup, the
two valence quarks from the projectile wave function emit
two photons via Bremsstrahlung. The two photonþ jet
systems are put on shell by interacting coherently over the
whole longitudinal extent of the target; see Fig. 2. Although
the scattering of the two quarks is independent, the
production of two photonþ jet systems is not independent
due to the interference diagrams (shown in Fig. 2).
In the following, two-dimensional vectors in transverse

space are written in boldface.
The cross section for the production of two quarks with

momentum q and q0 and two prompt photons with
momenta k1 and k2 in the scattering of two on-shell quarks
with momentum p1 and p2 off a hadronic target (either a
proton or a nucleus), given in Eq. (5), can be written in the
following general form:

dσqq→γγqq ¼ d3k1
ð2πÞ32k−1

d3k2
ð2πÞ32k−2

d3q
ð2πÞ32q−

d3q0

ð2πÞ32q0−
1

4p−
1p

−
2

hjhjetðqÞ; jetðq0Þ; γðk1Þ; γðk2ÞjProtonij2icolor sources: ð6Þ

For explicit calculations one needs the two quarks distribution in the proton wave function. In full generality we can write

jProtoni ¼ 1

2Nc

X
s1;s2;c1;c2

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
X
X

~Aðp1; p2; s1; s2; c1; c2;XÞjp1; s1; c1;p2; s2; c2; Xi; ð7Þ

where ðs1; s2Þ and ðc1; c2Þ are the spin and the color indices
of two quarks (in the projectile proton), respectively, and
for simplicity we have assumed that the two quarks have
the same flavor. The generalization to include u and d

quarks is straightforward and would result in promoting ~A
to a matrix in flavor space. In this expression X stands for
all the “spectator” degrees of freedom in the proton wave

function which are integrated over inclusively in the
process Eq. (5). These include the occupation numbers
of the spectator quarks and gluons as well as the momen-
tum, spin, and color index of these spectators. The factor
1

2Nc
was introduced for future convenience.

To calculate the cross section we require the reduced two
quark density matrix

X
X

jProtonihProtonj ¼
Z
p1;p2;p0

1
;p0

2

~Rðp1; p2; p0
1; p

0
2; s1; s2; s

0
1; s

0
2; c1; c2; c

0
1; c

0
2Þjp1; s1; c1;p2; s2; c2ihp0

1; s
0
1; c

0
1;p

0
2; s

0
2; c

0
2j;

ð8Þ
where

~Rðp1; p2; p0
1; p

0
2; s1; s2; s

0
1; s

0
2; c1; c2; c

0
1; c

0
2Þ ¼

X
X

~Aðp1; p2; s1; s2; c1; c2;XÞ ~A�ðp0
1; p

0
2; s

0
1; s

0
2; c

0
1; c

0
2;XÞ: ð9Þ

While it is possible to perform the calculations with the general density matrix Eq. (8), for simplicity we will assume that the
integration over the spectator partons leads to decorrelation of spin and color of the two active quarks in the density matrix.
We will also take a simple product ansatz for the density matrix in momentum space. In other words we take the following
simple form:
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~Rðp1; p2; p0
1; p

0
2; s1; s2; s

0
1; s

0
2; c1; c2; c

0
1; c

0
2Þ ¼

�
1

2Nc

�
2
~Pðp1; p2Þ ~P�ðp0

1; p
0
2Þ: ð10Þ

The function ~Pðp1; p2Þ now determines the distribution of
the two quarks in the proton on the amplitude level.
We stress that in practical terms the product ansatz

makes very little difference since we are not going to
assume that the momentum of the pair p1 þ p2 is equal
to the total momentum of the proton. The most important
feature of Eq. (10) is that the two quarks in Eq. (10) are
taken to be totally uncorrelated in spin and color. One
can check explicitly that taking an analogous factorized
form for a single quark density matrix reproduces
exactly the standard expressions for cross section from
a single quark where one averages over spin and color
on the cross-section level, and the parton distribution
function (pdf) given by

R
pT

j ~PðpT; xÞj2. We will quote
the result obtained for a general density matrix later;
see Eq. (38).

With this simple form of the reduced density matrix our
calculation amounts to replacing the proton wave function
in Eq. (6) by

jProtoni → jTwo quarksi

¼ 1

2Nc

X
s1;s2;c1;c2

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
~Pðp1; p2Þ

× jp1; s1; c1;p2; s2; c2i: ð11Þ
In the following, the spin and the color indices of two

quarks in the conjugate amplitude are denoted by ðs01; s02Þ
and ðc01; c02Þ, respectively; see Fig. 3. The indices ðs; s0Þ and
ðc; c0Þ denote spin and color indices of the produced two
quarks in the final state. The matrix element of the
scattering amplitude in Eq. (6) is given by

hjetðqÞ; jetðq0Þ; γðk1Þ; γðk2Þjtwo quarksi

¼ 1

2Nc

X
s;s0;s1;s2;c;c0;c1;c2

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
~Pðp1; p2Þ × ½hq; s; c; k1jp1; s1; c1ihq0; s0; c0; k2jp2; s2; c2i

þ hq; s; c; k2jp1; s1; c1ihq0; s0; c0; k1jp2; s2; c2i þ hq0; s0; c0; k1jp1; s1; c1ihq; s; c; k2jp2; s2; c2i
þ hq0; s0; c0; k2jp1; s1; c1ihq; s; c; k1jp2; s2; c2i�: ð12Þ

In Eq. (12), we perform the sum over the spin and the
color of produced quarks. Here hq; s; c; k1jp1; s1; c1i is the
perturbative production amplitude for the process,

qðp1; s1; c1Þ þ A → γðk1Þ þ qðq; s; cÞ þ jetðq0Þ þ X:

ð13Þ
For brevity of notation, the photon polarization indices
and summation over photon polarization are implicit in

Eq. (12) and throughout this paper. The expression in
Eq. (12) can be simplified by rearranging terms,

hjetðqÞ; jetðq0Þ; γðk1Þ; γðk2Þjtwo quarksi

¼ 1

2Nc

X
s;s0;s1;s2;c;c0;c1;c2

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 Pðp1; p2Þ

× ½hq; s; c; k1jp1; s1; c1ihq0; s0; c0; k2jp2; s2; c2i
þ hq; s; c; k2jp1; s1; c1ihq0; s0; c0; k1jp2; s2; c2i�; ð14Þ

where the function P is related to ~P via

Pðp1; p2Þ ¼ ~Pðp1; p2Þ þ ~Pðp2; p1Þ: ð15Þ

Note that while the amplitude ~P is not necessarily sym-
metric under the interchange of the two quarks, the function
P is symmetric by construction. It depends on longitudinal
and transverse momentum of two quarks2

kj

ki

qq

qq

ke

kf

, ,

,

p
1

s
2
, p

2

p
1

s
2

p
2

s
1

s
1

FIG. 3. A typical diagram contributing to two prompt photons
production from two quarks in the background of the CGC field.
The diagrams on the left and right sides of the dashed line
correspond to the amplitude and the complex conjugate ampli-
tude. The cross section at leading-order is given by the sum of
four diagrams of this type shown in Fig. 2.

2With a mild abuse of notation we are using the same symbol
P to denote the amplitude as a function of three momenta as well
as the function of transverse momenta and the longitudinal
momentum fraction.
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Pðp1; p2Þ≡ Pðx1; x2;p1;p2Þ; ð16Þ

where x1 and x2 are the longitudinal light-cone fractions of the incoming quarks in the projectile nucleon wave function.
The exact values of x1 and x2 are given later in Eq. (34). Using Eq. (14), we obtain

jhjetðqÞ; jetðq0Þ; γðk1Þ; γðk2Þjtwo quarksij2

¼ 1

4N2
c

X
spin;color

Z Z Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3p0

1

ð2πÞ3
d3p0

2

ð2πÞ3 Pðp1; p2ÞP�ðp0
1; p

0
2Þ

× ½hq; s; c; k1jp1; s1; c1ihq0; s0; c0; k2jp2; s2; c2ihp0
2; s

0
2; c

0
2jq0; s0; c0; k2ihp0

1; s
0
1; c

0
1jq; s; c; k1i

þ hq; s; c; k1jp1; s1; c1ihq0; s0; c0; k2jp2; s2; c2ihp0
2; s

0
2; c

0
2jq0; s0; c0; k1ihp0

1; s
0
1; c

0
1jq; s; c; k2i

þ hq; s; c; k2jp1; s1; c1ihq0; s0; c0; k1jp2; s2; c2ihp0
2; s

0
2; c

0
2jq0; s0; c0; k2ihp0

1; s
0
1; c

0
1jq; s; c; k1i

þ hq; s; c; k2jp1; s1; c1ihq0; s0; c0; k1jp2; s2; c2ihp0
2; s

0
2; c

0
2jq0; s0; c0; k1ihp0

1; s
0
1; c

0
1jq; s; c; k2i�: ð17Þ

In the lowest order in the electromagnetic αem and the
strong αs coupling constants the q → qγ amplitude can be
written in the following formal form:

hqðqÞ; γðk1ÞjqðpÞi
¼ −eqūðqÞ½F ðq;p − k1ÞG0

Fðp − k1Þϵðk1Þ
þ ϵðk1ÞG0

Fðqþ k1ÞF ðqþ k1; pÞ�uðpÞ; ð18Þ

where eq is the fractional electric charge of the projec-
tile quark, and G0

F is the free Feynman propagator of a
quark with mass m. In the above u and ϵμ denote the
quark free spinor and the photon polarization vector,
respectively. In the above, the operator matrix F
contains the interaction between the quark and the
colored glass condensate target, which resums multiple
interactions with the background CGC field [46,47].

Assuming that the target is moving in the positive z
direction, we have [7]

F ðq;pÞ ¼ 2πδðq− − p−Þγ−signðp−Þ

×
Z

d2x½UðxÞ − 1�eiðq−pÞ·x; ð19Þ

where UðxÞ is a unitary matrix in fundamental repre-
sentation of SUðNcÞ—the scattering matrix of a quark
on the colored glass condensate target,

UðxÞ ¼ T exp

�
−ig2

Z
dx−

1

∇2
ρaðx−;xÞta

�
: ð20Þ

Here ρ is the density of the color sources in the target,
and ta is the generator of SUðNcÞ in the fundamental
representation. Using the definition of F in Eq. (19),
one can rewrite the amplitude as

hqðqÞ; γðk1ÞjqðpÞi ¼ −ieqūðqÞ
�
γ−ðp − k1 þmÞϵðk1Þ

ðp − k1Þ2 −m2
þ ϵðk1Þðqþ k1 þmÞγ−

ðqþ k1Þ2 −m2

�
uðpÞ

× 2πδðq− þ k−1 − p−Þ
Z

d2x½UðxÞ − 1�eiðqþk1−pT Þ·x;

≈ −ieqūðqÞγ−uðpÞ
�
q · ϵ
q · k1

−
p · ϵ
p · k1

�
2πδðq− þ k−1 − p−Þ

Z
d2x½UðxÞ − 1�eiðqþk1−pTÞ·x; ð21Þ

where in the last line we employed the soft approxi-
mation, namely assuming that jk1j < jp − qj. In order to
calculate the cross section Eq. (6) we first need to
perform the color charge averaging of the expression
Eq. (17) over the target CGC field. This is usually done
either using the McLerran-Vengopalan model [48] de-
fined by the weight function,

W½ρ� ¼ T exp

�
−
Z

dx−d2xT
ρaðx−;xÞρaðx−;xÞ

2μ2ðx−Þ
�
; ð22Þ

or using numerical solutions of the Balitsky-Kovchegov
equation [49]. For our present purposes the exact weight
function does not matter. It is important though that any
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high energy/density averaging procedure does not affect
the spin dependence in Eq. (6).

A. Tracing over color

Using Eq. (21) we can perform the summation over color
indices and averaging over the target color field in Eq. (17).
A generic term in the integrand of Eq. (17) has the
following structure:

I ¼
�X

spin

X
color

hq; s; c; kijp1; s1; c1ihp0
1; s

0
1; c

0
1jq; s; c; kei

× hq0; s0; c0; kjjp2; s2; c2ihp0
2; s

0
2; c

0
2jq0; s0; c0; kfi

�
ρ

;

¼ ð−ieqÞ4δtot ×Mspin ×

� X
c1;c2;c01;c

0
2

ð� � �Þc1c01ð� � �Þc2c02
�

ρ

¼ ð−ieqÞ4δtotMspin
N2

c

Nc þ 1
ðNcN

ð2Þ
F × Nð2Þ

F þ Nð4Þ
F Þ;

ð23Þ

where indices ði; j ¼ 1; 2Þ and ðe; f ¼ 1; 2Þ denote the two
produced photons (note that i ≠ j and e ≠ f) in the
amplitude and conjugate amplitude, respectively; see
Fig. 3. The factor Mspin contains the spin summation
[as defined in Eq. (31)] and δtot is given by

δtot ¼ ð2πÞ4δðq− þ k−i − p−
1 Þδðq− þ k−e − p0−

1 Þ
× δðq0− þ k−j − p−

2 Þδðq0− þ k−f − p0−
2 Þ: ð24Þ

In Eq. (23), Nð2Þ
F and Nð4Þ

F are the traces of two (dipole) and
four (quadrupole) lightlike fundamental Wilson lines in the
background of the color fields of the target nucleus (or
proton), respectively,

Nð2Þ
F ðb;r;xgÞ¼

1

Nc
hTr½1−U†ðxÞUðyÞ�ixg ;

Nð4Þ
F ðb;r;b0;r0;xgÞ¼

1

Nc
hTr½1−U†ðxÞUðyÞU†ðx0ÞUðy0Þ�ixg ;

ð25Þ

where the vector b≡ ðxþ yÞ=2 is the impact parameter of
the dipole relative to the target and r≡ x − y is the dipole
transversevector.Note that the expectationvalues on the right-
hand side are calculated over the ensemble of target fields
evolved up to rapidity yg¼ ln1=xg. The target in principle is
evolved by the JIMWLK [45] or Balitsky–Kovchegov [49]
equations. The parameter xg can be related to the rapidities
and transverse momenta of the prompt photons and final-
state quarks via energy-momentum conservation [17]. In the
following for notational simplicity we drop the explicit label
xg on the dipole and quadrupole amplitudes.
The explicit expression for I in Eq. (23) is given by

I ¼ ð−ieqÞ4δtotMspin
Nc

Nc þ 1

× ½hTr½ðUðqþ ki − p1Þ − 1Þ · ðU†ðp0
1 − q − keÞ − 1Þ�iρhTr½ðUðq0 þ kj − p2Þ − 1Þ · ðU†ðp0

2 − q0 − kfÞ − 1Þ�iρ
þ hTr½ðUðqþ ki − p1Þ − 1Þ · ðU†ðp0

1 − q − keÞ − 1Þ · ðUðq0 þ kj − p2Þ − 1Þ · ðU†ðp0
2 − q0 − kfÞ − 1Þ�iρ�: ð26Þ

The first and the second terms in Eq. (26) correspond to the Fourier transformed dipole and quadrupole scattering
amplitudes defined in Eq. (25), respectively. It is useful to rewrite the above expression in terms of the dipole transverse
separation vector r (and r0) and the impact parameter b (and b0),

I × ðNc þ 1Þ
e4qδtotMspinNc

¼
Z

d2rd2beir:ðqþ
1
2
ðkiþke−p1−p0

1
ÞÞeib:ðki−keþp0

1
−p1ÞhTr½ðUðbþ r=2Þ − 1Þ · ðU†ðb − r=2Þ − 1Þ�iρ

×
Z

d2r0d2b0eir0:ðq0þ
1
2
ðkjþkf−p2−p0

2
ÞÞeib0:ðkj−kfþp0

2
−p2ÞhTr½ðUðb0 þ r0=2Þ − 1Þ · ðU†ðb0 − r0=2Þ − 1Þ�iρ

þ
Z

d2rd2bd2r0d2b0eir:ðqþ
1
2
ðkiþke−p1−p0

1
ÞÞeir0:ðq0þ

1
2
ðkjþkf−p2−p0

2
ÞÞeib:ðki−keþp0

1
−p1Þeib0:ðkj−kfþp0

2
−p2Þ

× hTr½ðUðbþ r=2Þ − 1Þ · ðU†ðb − r=2Þ − 1Þ · ðUðb0 þ r0=2Þ − 1Þ · ðU†ðb0 − r0=2Þ − 1Þ�iρ: ð27Þ

At large Nc, the term containing the quadrupole amplitude
is suppressed relative to the one containing dipoles by a
factor 1=Nc. At leading order in 1=Nc one may therefore
ignore the quadrupole contribution.
Another simplification arises if we assume that the

target is uniform in the impact parameter space. This

approximation may be appropriate for p-A scatterings
and is almost always employed in CGC based calcula-
tions. Under this assumption one can ignore the b

dependence in Nð2Þ
F , and the integrals over b and b0 in

Eq. (27) lead to delta functions. Therefore the cross
section has the structure
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I ∝ δ2ðki − ke − Δ1Þδ2ðkj − kf − Δ2Þ; ð28Þ

where we have defined

Δ1 ¼ p1 − p0
1;

Δ2 ¼ p2 − p0
2; ð29Þ

with (p1, p2) and (p0
1, p

0
2) being the transverse momenta of

two projectile quarks in the amplitude and its conjugate
amplitude, respectively. The momentum Δ1;2 is the differ-
ence of the momenta of two partons from the wave
function of the colliding hadron in the amplitude and
the amplitude conjugated. Note that the difference of
parton transverse momenta within the parton pair is not
conserved. Thus at large Nc we have

I ¼ ð−ieqÞ4ð2πÞ4N2
cδtotMspinδ

2ðki − ke − Δ1Þδ2ðkj − kf − Δ2ÞNð2Þ
F ðqþ ki − p1ÞNð2Þ

F ðq0 þ kj − p2Þ: ð30Þ

B. Tracing over spin

Now we turn to the spin summation in the expression Eq. (17). The matrix element Mspin in Eq. (23) is given by

Mspin ¼
X
α;β;γ;η

X
s1;s02;s2;s

0
2

ū
s0
1
α ðp0

1ÞAαβðq; ki; ke; p1; p0
1Þus1β ðp1Þūs

0
2
γ ðp0

2ÞAγηðq0; kj; kf; p2; p0
2Þus2η ðp2Þ; ð31Þ

where the matrix functions A is defined as follows:

Aðq; ki; ke; p; p0Þ ¼ γ−ðqþmÞγ−
�
q · ϵi
q · ki

−
p · ϵi
p · ki

��
q · ϵ�e
q · ke

−
p0 · ϵ�e
p0 · ke

�
: ð32Þ

The summation over photon polarization is implicit in Eq. (31). Themass term in the spinmatrix element in the above equation
is inherited from the quark propagator in Eq. (21). However, in the high-energy limit employed here, the mass term in fact is
irrelevant, since ðγ−Þ2 ¼ 0, and it thus disappears from all the following formulas. All the terms in Eq. (17) have a similar
structure to Eq. (23) and can be written out explicitly using Eqs. (24), (27), (30), and (31). Therefore, at large Nc we obtain

jhjetðqÞ; jetðq0Þ; γðk1Þ; γðk2Þjtwo quarksij2 ¼ e4qπ2
X
spin

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3N
ð2Þðqþ k1 − p1ÞNð2Þðq0 þ k2 − p2Þ

× δðp−
1 − q− − k−1 Þδðp−

2 − q0− − k−2 Þ
�
Pðx1; x2;p1;p2ÞP�ðx1; x2;p1;p2Þ

× ūðp1Þγ−qγ−uðp1Þūðp2Þγ−q0γ−uðp2Þ
				 q · ϵ1
q · k1

−
p1 · ϵ1
p1 · k1

				
2
				 q

0 · ϵ2
q0 · k2

−
p2 · ϵ2
p2 · k2

				
2

þ Pðx1; x2;p1;p2ÞP�ðx01; x02;p1 þ k2 − k1;p2 þ k1 − k2Þ
× ūðp1 þ k2 − k1Þγ−qγ−uðp1Þūðp2 þ k1 − k2Þγ−q0γ−uðp2Þ

×

�
q · ϵ1
q · k1

−
p1 · ϵ1
p1 · k1

��
q · ϵ�2
q · k2

−
ðp1 þ k2 − k1Þ · ϵ�2
ðp1 þ k2 − k1Þ · k2

��
q0 · ϵ2
q0 · k2

−
p2 · ϵ2
p2 · k2

�

×

�
q0 · ϵ�1
q� · k1

−
ðp2 þ k1 − k2Þ · ϵ�1
ðp2 þ k1 − k2Þ · k1

�

þ ðk1 ↔ k2Þ; ð33Þ

where we performed the integrals over p0
1 and p

0
2 in Eq. (17) using the delta functions in Eqs. (24) and (30). In the above, the

light-cone parameters x1, x2, x01; x
0
2 in P and P� are given by

x1 ¼
q− þ k−1ffiffiffiffiffiffiffi

s=2
p ; x2 ¼

q0− þ k−2ffiffiffiffiffiffiffi
s=2

p ;

x01 ¼
q− þ k−2ffiffiffiffiffiffiffi

s=2
p ¼ x1 þ

k−2 − k−1ffiffiffiffiffiffiffi
s=2

p ; x02 ¼
q0− þ k−1ffiffiffiffiffiffiffi

s=2
p ¼ x2 þ

k−1 − k−2ffiffiffiffiffiffiffi
s=2

p ; ð34Þ

with
ffiffiffi
s

p
being the nucleon-nucleon center-of-mass energy, and we have

x1 þ x2 ≤ 1: ð35Þ
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We now further simplify the expression in Eq. (33). First, we commute one of the γ− through q and use the fact that γ−γ− ¼ 0.
We also perform the sum over the photon polarization using the completeness of the photon polarization vectors, and
neglecting the quark mass. Therefore, we obtain

jhjetðqÞ; jetðq0Þ; γðk1Þ; γðk2Þjtwo quarksij2

¼ e4q16π2
X
spin

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3N
ð2Þðqþ k1 − p1ÞNð2Þðq0 þ k2 − p2Þ

× δðp−
1 − q− − k−1 Þδðp−

2 − q0− − k−2 Þq−q0−fPðx1; x2;p1;p2ÞP�ðx1; x2;p1;p2Þūðp1Þγ−uðp1Þūðp2Þγ−uðp2Þ

×
q · p1

q · k1p1 · k1

q0 · p2

q0 · k2p2 · k2
þ Pðx1; x2;p1;p2ÞP�ðx01; x02;p1 þ k2 − k1;p2 þ k1 − k2Þūðp1 þ k2 − k1Þγ−uðp1Þūðp2 þ k1 − k2Þγ−uðp2Þ

×

�
q · q0

q · k1q0 · k1
þ p1 · ðp2 þ k1 − k2Þ
p1 · k1ðp2 þ k1 − k2Þ · k1

−
q · ðp2 þ k1 − k2Þ

q · k1ðp2 þ k1 − k2Þ · k1
−

p1 · q0

p1 · k1q0 · k1

�

×

�
q · q0

q · k2q0 · k2
þ p2 · ðp1 þ k2 − k1Þ
p2 · k2ðp1 þ k2 − k1Þ · k2

−
q0 · ðp1 þ k2 − k1Þ

q0 · k2ðp1 þ k2 − k1Þ · k2
−

p2 · q
p2 · k2q · k2

�

þ ðk1 ↔ k2Þ: ð36Þ

Note that in the above expression each Dirac spinor carries an index s, and these indices are summed over completely
independently. However, the spin structure can be simplified further in the high energy limit. At high energy the incoming
quark, outgoing quark, and photon are practically collinear, since the scattering angle of the quark is very small at finite
transverse momentum transfer. In such kinematics angular momentum conservation requires that the helicities of the
incoming and outgoing quarks are opposite. This in turn means that s1 ¼ s01 and s2 ¼ s02; see Fig. 3. Using the high-energy
properties of Dirac spinors, one can perform the remaining spin summation in Eq. (36) and obtain

jhjetðqÞ; jetðq0Þ; γðk1Þ; γðk2Þjtwo quarksij2

¼ e4qð16πÞ2
Z Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3N
ð2Þðqþ k1 − p1ÞNð2Þðq0 þ k2 − p2Þ

× δðp−
1 − q− − k−1 Þδðp−

2 − q0− − k−2 Þq−q0−fPðx1; x2;p1;p2ÞP�ðx1; x2;p1;p2Þp−
1p

−
2

q · p1

q · k1p1 · k1

q0 · p2

q0 · k2p2 · k2

þ Pðx1; x2;p1;p2ÞP�ðx01; x02;p1 þ k2 − k1;p2 þ k1 − k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−
1 ðp−

1 þ k−2 − k−1 Þp−
2 ðp−

2 þ k−1 − k−2 Þ
q

×

�
q · q0

q · k1q0 · k1
þ p1 · ðp2 þ k1 − k2Þ
p1 · k1ðp2 þ k1 − k2Þ · k1

−
q · ðp2 þ k1 − k2Þ

q · k1ðp2 þ k1 − k2Þ · k1
−

p1 · q0

p1 · k1q0 · k1

�

×

�
q · q0

q · k2q0 · k2
þ p2 · ðp1 þ k2 − k1Þ
p2 · k2ðp1 þ k2 − k1Þ · k2

−
q0 · ðp1 þ k2 − k1Þ

q0 · k2ðp1 þ k2 − k1Þ · k2
−

p2 · q
p2 · k2q · k2

�

þ ðk1 ↔ k2Þ: ð37Þ

The productsPP� that appear in our final expressionEq. (37)
can be interpreted in terms of 2GTMD of the projectile
hadron [denoted by T ; see Eq. (39)]. First off note that if we
discard the simplifying assumption about the factorizability
of the reduced density matrix Eq. (10), our final formulas
would remain the same apart from the substitution

Pðx1; x2;p1;p2ÞP�ðx01; x02;p0
1;p

0
2Þ

→ tr½ ~Rðx1; x2;p1;p2; x01; x
0
2;p

0
1;p

0
2Þ�; ð38Þ

where on the right-hand side the densitymatrix is traced over
the spin and color.
Our approximation of the translational invariance of the

nuclear wave function in the impact parameter space [which
led to the delta functions in Eq. (28)] means that the total

transverse momenta carried by quarks in the amplitude and
complex conjugate amplitude are equal. As a result for the
first term in Eq. (37), we have Δ1 ¼ Δ2 ¼ 0 while in the
second term (the correlated part), we have Δ1¼Δ2 ¼Δ≠ 0,
whereΔ≡k2−k1. Additionally note that in the soft approxi-
mation which we are employing throughout, x01≈x1;x02≈x2.
Thus the basic quantity that appears in Eq. (36) is

T ðx1; x2;p1;p2;ΔÞ
≡ tr½ ~Rðx1; x2;p1;p2; x1; x2;p1 þ Δ;p2 − ΔÞ�;
¼ Pðx1; x2;p1;p2ÞP�ðx1; x2;p1 þ Δ;p2 − ΔÞ: ð39Þ

In terms of the wave function of the hadron it is defined as
(suppressing spin and color indices)
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T ðx1; x2;p1;p2;ΔÞ ¼
X∞
n¼3

Z Y
i≠1;2

d2pi

ð2πÞ2
Z

1

0

Y
i≠1;2

dxi

×Ψnðx1; x2;…;p1;p2;…Þ
×Ψþ

n ðx1; x2;…;p1þΔ;p2 − Δ;…Þ

× ð2πÞ3δ
�Xn

i¼1

xi − 1

�
δ

�Xn
i¼1

pi

�
;

ð40Þ

where Ψn is the normalized n-parton wave function. It is
related to the generalized double parton distribution (2GPD)
[29] in a simple way,

Dðx1; x2; μ21; μ22;ΔÞ ¼
Z

d2p1

ð2πÞ2
d2p2

ð2πÞ2 θðμ
2
1 − p2

1Þθðμ22 − p2
2Þ

× T ðx1; x2;p1;p2;ΔÞ; ð41Þ

where μ21 and μ22 are the virtualities of the two quarks.
This nonperturbative object, 2GPD denoted by D, appears
in the calculations involving DPS in pQCD in the
collinear factorization framework, for example the four-
jet production in proton-proton collisions [29]; see also
Refs. [50–53].
Using the above definitions and Eqs. (6) and (37), we can

rewrite the cross section of double photon-quark pair
production in the following general form:

dσqqþA→γγþqq ¼
Z Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3 ½T ðx1; x2;p1;p2; 0Þdσqðp1ÞþA→γðk1ÞþqðqÞ × dσqðp2ÞþA→γðk2Þþqðq0Þ

þ T ðx1; x2;p1;p2;ΔÞdσInterference�; ð42Þ

where dσqþA→γþq is the cross section of the single prompt
photon-quark production in qþ A collisions calculable via
diagrams in Fig. 1 and can be immediately extracted from
our final expression in Eq. (37). The cross section of
dσqþA→γþq obtained here is consistent with the soft
approximation in Ref. [17]. In the approximation of
uncorrelated partons, we have

T ðx1; x2;p1;p2;ΔÞ ≈GGTMDðx1;p1;ΔÞGGTMDðx2;p2;ΔÞ;
ð43Þ

where GGTMDðx1;p1;ΔÞ is the one-particle generalized
transverse momentum-dependent parton distribution
(GTMD) [54–59]. Under the assumption of uncorrelated
partons in the projectile hadron, the first term in Eqs. (37)
and (42) can be factorized into two independent cross
sections for prompt photon-quark production. Hence, the
first part in Eq. (37) [and in Eq. (42)] contains the
contributions of independent production. The second term

in Eq. (37) [and in Eq. (42)] cannot be factorized into two
independent terms even if the partons in the projectile wave
function are uncorrelated. This term leads to nontrivial
correlations between two produced photons, whose nature
we discuss in the next section. Note that the correlated part
(second term) corresponds to the interference diagrams
where the produced photons in the amplitude and its
conjugated amplitude have different momenta; see Fig. 3.
It is remarkable that the correlations of two produced
photons are explicitly related to the fact that Δ ≠ 0 in the
second term.

III. HANBURY BROWN AND TWISS
CORRELATIONS IN INCLUSIVE DIPHOTON

CROSS SECTION

The inclusive diphoton cross section is obtained by
substituting the expression in Eq. (37) into Eq. (6), and
integrating over q and q0. Thus we obtain

dσqqþA→γγþX

d3k1d3k2
¼ e4q

ð2πÞ6
1

k−1 k
−
2

Z Z Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
d2q
ð2πÞ2

d2q0

ð2πÞ2N
ð2Þðqþ k1 − p1ÞNð2Þðq0 þ k2 − p2Þ

×

�
T ðx1; x2;p1;p2; 0Þ

q · p1

q · k1p1 · k1

q0 · p2

q0 · k2p2 · k2
þ T ðx1; x2;p1;p2;ΔÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−
1 ðp−

1 þ Δ−Þp−
2 ðp−

2 − Δ−Þp
p−
1p

−
2

×

�
q · q0

q · k1q0 · k1
þ p1 · ðp2 − ΔÞ
p1 · k1ðp2 − ΔÞ · k1

−
q · ðp2 − ΔÞ

q · k1ðp2 − ΔÞ · k1
−

p1 · q0

p1 · k1q0 · k1

�

×

�
q · q0

q · k2q0 · k2
þ p2 · ðp1 þ ΔÞ
p2 · k2ðp1 þ ΔÞ · k2

−
q0 · ðp1 þ ΔÞ

q0 · k2ðp1 þ ΔÞ · k2
−

p2 · q
p2 · k2q · k2

�

; ð44Þ
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where

q−≡p−
1 −k−1 ; q0−≡p−

2 −k−2 ; Δ¼ k2−k1: ð45Þ
The second term in this expression, the interference
term expresses the HBT correlations. We note that
under the naive parton model assumption the transverse
momenta of all incoming partons vanish, and we have
T ðx1; x2;p1;p2;ΔÞ ∝ δðΔÞ; thus the HBT peak has zero
width.
To understand the qualitative features of this expression

beyond this naive approximation we consider the following

special kinematics. First we take the two photons to be
soft, k−

1ð2Þ ≪ p−
1 ; p

−
2 . We also assume that the transverse

momentum of the two photons are large, but are not too
different from each other jk1 þ k2j ≫ jk1 − k2j. In the
spirit of the parton model, the intrinsic transverse momen-
tum in the proton wave function is small, and thus the
integration over p1 and p2 is dominated by the region
jp1j; jp2j≪ jk1j≈ jk2j. Additionally we assume that
the dipole scattering amplitude is saturated, and thus the
momentum transfer is strongly peaked at Qs ≪ k. In the
following we use the notation k ¼ jk1 þ k2j=2. In this
kinematics we obtain

�
q · q0

q · k1q0 · k1
þ p1 · ðp2 − ΔÞ
p1 · k1ðp2 − ΔÞ · k1

−
q · ðp2 − ΔÞ

q · k1ðp2 − ΔÞ · k1
−

p1 · q0

p1 · k1q0 · k1

�
≈ −

4ðk−1 Þ2
s=2

1

x1x2

q0 · q
k4

; ð46Þ

�
q · q0

q · k2q0 · k2
þ p2 · ðp1 þ ΔÞ
p2 · k2ðp1 þ ΔÞ · k2

−
q0 · ðp1 þ ΔÞ

q0 · k2ðp1 þ ΔÞ · k2
−

p2 · q
p2 · k2q · k2

�
≈ −

4ðk−2 Þ2
s=2

1

x1x2

q0 · q
k4

: ð47Þ

For the interference contribution to the cross section we obtain

dσqqþA→γγþX

d3k1d3k2

				
interference

≈
e4q

ð2πÞ6 k
−
1 k

−
2

16

ð2πÞ2k8
Z

d2p1

ð2πÞ2
d2p2

ð2πÞ2
dx1
x1

dx2
x2

d2q
ð2πÞ2

d2q0

ð2πÞ2
ðq0 · qÞ2
p−
1p

−
2

Nð2Þðqþ k1 − p1Þ

× Nð2Þðq0 þ k2 − p2ÞT ðx1; x2;p1;p2;ΔÞ: ð48Þ

Assuming rotational invariance of the dipole scattering amplitude we can estimate the average value of momentum as

Z
d2q
ð2πÞ2 qiqjNð2Þðqþ k1 − p1Þ ¼

Z
d2q
ð2πÞ2 ðq − k1 þ p1Þiðq − k1 þ p1ÞjNð2ÞðqÞ

¼ 1

2
δij

Z
d2q
ð2πÞ2 q

2Nð2ÞðqÞ ¼ 1

2
δijQ2

sSeff ; ð49Þ

where Seff is an effective interaction area, Qs is the saturation scale of the system, and we have used the fact that

Z
d2q
ð2πÞ2N

ð2ÞðqÞ ¼ 0;
Z

d2q
ð2πÞ2 qjNð2ÞðqÞ ¼ 0: ð50Þ

Therefore we obtain

dσqqþA→γγþX

d3k1d3k2

				
interference

≈
2e4q
ð2πÞ6

k−1 k
−
2

s
16Q4

sS2eff
ð2πÞ2k8

Z
d2p1

ð2πÞ2
d2p2

ð2πÞ2 dx1dx2T ðx1; x2;p1;p2;ΔÞ: ð51Þ

We did not indicate the virtuality of the double parton
distribution in the above, but it is clearly given by the large
momentum scale in the problem, which is the transverse
momentum of the individual photons kT .
The form of the 2GTMD in Eq. (51) is not known

experimentally. Nevertheless, the physics of the correlation
present in Eq. (51) is clearly that of the HBTeffect. We find
correlation between the bosons (photons) emitted from
uncorrelated sources (quarks). Indeed the behavior of this
interference term is precisely a typical HBT behavior.

The easiest way to see this is in the approximation where
the two incoming partons are taken to be uncorrelated in the
proton wave function in the high energy limit. In this case
we assume

Pðx1; x2;p1;p2Þ ¼ Pðx1;p1ÞPðx2;p2Þ: ð52Þ

The exact shape of Pðx;pÞ does not matter much. The
only important aspect of it is that it should reflect the
existence of the nonperturbative distance scale R. This
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scale determines the physical size of the quark cloud in the
proton and is thus naturally associated with the proton
radius. In momentum space this means that the transverse
momentum dependent distribution (TMD) should decrease
beyond p ∼ R−1. For illustrative purposes here we assume a
simple Gaussian distribution for the intrinsic momentum
dependence3

Pðx;pÞ ∝ e−
1
2
R2jpj2 : ð53Þ

We then have

Z
d2p1

ð2πÞ2
d2p2

ð2πÞ2 T ðx1; x2;p1;p2;ΔÞ ¼ fqðx1Þfqðx2Þe−1
2
R2Δ2

;

ð54Þ

where the function fqðx1Þ is the usual quark pdf (the
virtuality is implicit). The interference thus leads to enhance-
ment of the cross section for jk1 − k2j < 1=R—a typical
HBT correlation behavior. The nonperturbative scale R can
therefore be directly measured by measuring photon corre-
lations. The magnitude of the effect drops pretty fast at the
large transverse momentum of the photons, but presumably
at kT ∼Qs the interference piece should not be significantly
suppressed relative to the independent production piece.
Another popular assumption in the literature is to

approximate the GPD by GGPDðx1;p2
1;ΔÞ≈Gðx1;p2

1ÞF ðΔÞ
where G is the conventional parton (quark) distribution of
the nucleon and F ðΔÞ is the nonperturbative proton form
factor [29,62]. If this factorization is assumed to hold at any
virtuality p2

1, it is equivalent to a similar factorizable approxi-
mation for GTMD: GGTMDðx1;p1;ΔÞ≈Gðx1;p1ÞF ðΔÞ
where Gðx1;p1Þ is the TMD. This, via the use of
Eq. (43) again leads to Eq. (54) with the Gaussian factor
replaced byF ðΔÞ. The form factor is maximal atΔ ¼ 0 and
decreases on the momentum scale μ, which has the same
physical meaning as the scale R−1 introduced in Eq. (53).
We note that a similar form factor for gluons was

discussed in the literature and the functional form F gðΔÞ ¼
1

ðΔ2=μ2þ1Þ2 was extracted from exclusive vector meson

production with μ2 ≈ 1 GeV2 [29,62]. The value of the
proton size extracted from F g is rather small, which is
consistent with many other experimental indications of a
small gluonic radius of the proton [63]. For diphoton HBT
we expect a different and larger transverse distance scale to
dominate the HBT correlations.

IV. CONCLUSIONS

In this paper we have developed the hybrid calculational
approach to forward particle production to include DPS

processes in the saturated environment. The main tech-
nical ingredient that appears in this approach is the
2GTMD function. In the “hybrid” approach, the DPS
means two partons from the projectile hadron coherently
colliding with the CGC shock wave. Thus on the target
side all multiple scattering interactions are resummed in
our calculation. In this sense we do not distinguish
between interactions of a single, double, or higher number
of target partons. For that reason the nuclear 2GTMD (or
2GPD) does not appear as a distinct object in our
calculation, and only the 2GTMD (or 2GPD) of the
projectile proton is relevant. This is in contrast to the
study of Ref. [64] where because the target was consid-
ered in the standard pQCD approach, the nuclear 2GPD
contribution is separately identified and can be studied in
multiple-jet production in p-A collisions.
We studied in detail the diphoton correlations that arise

due to the DPS process. We found that these correlations
reflect the Hanbury Brown and Twiss effect, and lead to
enhanced double photon production when the transverse
momentum of the two photons are within the inverse proton
radius of each other. At high momentum of produced
photons the correlated piece decreases quite fast (as 1=k8),
but it should give a significant enhancement when the
photon momenta are not much larger than the target
saturation scale. We showed that the width of the HBT
peak probes the transverse distance between the parton of
the pair in the 2GTMDs. Therefore, the HBTmeasurements
in two-particle production such as prompt photon pairs
provide useful information about the nonperturbative
2GTMDs.
It would be interesting to compare the magnitude of the

correlated cross section we find here with the correlations
generated through SPS [17]. We did not attempt a quanti-
tative comparison, since the 2GTMDs are not known with
significant accuracy. It is interesting to note, however, that
parametrically the DPS contribution can be competitive
with the SPS one, especially for intermediate transverse
momentum photons with jkj not much larger than Qs.
Although one requires two quarks to scatter, in the
saturated regime where the quark scattering amplitude is
of the order one, this is not suppressed by powers of αs.
Additionally, the DPS is enhanced by a factor roughly
equal to the number of quarks in the proton. Thus all in all
the DPS contribution can be comparable to the SPS one. It
would be very interesting if such correlations could be
observed experimentally.
Finally, we note that the DPS HBT correlations are not

limited to photon production. In particular these effects
were not included in the CGC calculation of dihadron
production at forward rapidities [19]. Quite clearly a
calculation similar to ours can be performed for double
gluon inclusive production, and it should also lead to HBT
correlations. Indeed we expect that for gluons the suppres-
sion of the correlated part at high kT will be significantly

3Such a Gaussian distribution is supported by various phe-
nomenological studies (see for example Refs. [60,61]). In this
paper, however, we are using it merely as an illustration.
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smaller than for photons, since it involves production of
only two high-kT particles in the final state, rather than four
as in the present case.
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