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For ultrarelativistic proton-proton and proton-nucleus collisions, we perform an exploratory study of the
contribution to the elliptic flow v2 coming from the orientation of the momentum of the produced particles
with respect to the reaction plane. Via the color glass condensate factorization valid at high energies, this
contribution is related to the orientation of a color dipole with respect to its impact parameter, which in turn
probes the transverse inhomogeneity in the target. Using the McLerran-Venugopalan model (with impact-
parameter dependence) as an effective description for the soft gluon distribution in the (proton or nuclear)
target, we present a semianalytic calculation of the dipole-scattering amplitude, including its angular
dependence. We find that the angular dependence is controlled by soft gluon exchanges and hence is
genuinely nonperturbative. The effects of multiple scattering turn out to be essential (in particular, they
change the sign of v2). We find that sizable values for v2, comparable to those observed in the LHC data and
having a similar dependence upon the transverse momenta of the produced particles, can be easily
generated via peripheral collisions. In particular, v2 develops a peak at a transverse momentum that scales
with the saturation momentum in the target.
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I. INTRODUCTION

The unexpectedly large azimuthal asymmetries in
hadron production observed in high-multiplicity events
in proton-proton (pp) and proton(deuteron)-nucleus (pA)
collisions at the LHC and RHIC [1–13] have triggered
intense debates concerning the physical origin of such
phenomena. It is indeed an outstanding problem to under-
stand how a small system like that produced in pp or pA
collisions, an order of magnitude smaller than in nucleus-
nucleus (AA) collisions, can develop a collective behavior
which is quite similar to that observed in AA collisions,
both in terms of its magnitude and in terms of its depend-
ences upon the transverse momenta, the rapidities, and the
masses of the produced hadrons [4–9]. Roughly speaking,
the associated scientific debate presents two opposing
paradigms. The first of them, which is closer to the
generally accepted interpretation of the corresponding
phenomena in AA collisions, relates the azimuthal corre-
lations observed in pp and pA collisions to “hydrodynamic
flow,” i.e., collective effects caused by strong interactions in
the final state. Whereas such scenarios may indeed lead to
reasonable descriptions of the data (at least for sufficiently
small transverse momenta and with suitable choices for the
initial conditions) [14–22], it seems nevertheless difficult to
conceive that hydrodynamic flow may develop in such
small systems. This motivated the second paradigm, which
rather builds upon the “initial-state”’ physics, i.e., the
collective phenomena associated with high parton densities
in the wave functions of (one or both of) the incoming
hadrons, prior to their collision [23–48].

In practice, the azimuthal asymmetries are most con-
veniently measured via multiparticle angular correlation.
But at a conceptual level, it is often preferable to think in
terms of the single-inclusive particle distribution event by
event and its dependence upon the azimuthal angle ϕ, as
measured with respect to the “reaction plane.” More
precisely, ϕ is the angle between the direction of motion
of a produced hadron in the transverse plane and its impact
factor. Then the azimuthal asymmetries are encoded in the
“flow coefficients” vnðpTÞ—the cosðnϕÞ Fourier moments
of the single-inclusive distribution in ϕ (see, e.g., [49]).
From this perspective, the azimuthal asymmetries reflect a
spontaneous breaking of rotational symmetry in the trans-
verse plane, which may have various origins. The best-
known example is that of noncentral AA collisions, where
the rotational symmetry is broken by the elliptic shape of
the “interaction region” (the overlapping region between
the two nuclei) in the transverse plane [49]. More generally
(and including for central AA collisions), azimuthal anisot-
ropies can be generated by fluctuations in the distribution
of particles (nucleons, or even gluons inside the partici-
pating nucleons) within the incoming nuclei [50]. Clearly,
the typical transverse sizes will be different for nucleon
number (respectively, gluon number) fluctuations, poten-
tially leading to different laws for the pT dependence of the
coefficients vnðpTÞ.
In the context of AA collisions, the theoretical ideas

concerning the particle (nucleon or parton) number fluc-
tuations are naturally embedded in the initial conditions for
the hydrodynamical equations. But such fluctuations can
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generate momentum-space azimuthal asymmetries already
by themselves, that is, even in the absence of interactions in
the final state leading to (hydrodynamic) flow. This is
particularly interesting for the pp and pA collisions, where
the importance of the final-state interactions is far from
being established. In this context, most of the calculations
associated with the initial-state paradigm alluded to above
relied on the effective theory for the color glass condensate
(CGC) [51,52], which predicts the event-by-event forma-
tion of “saturation domains” inside a dense hadronic target.
These are regions with a typical transverse size 1=Qs (Qs is
the target saturation momentum) where gluons have large
occupation numbers and are coherent with each other, so
they can also be described as condensates of strong
chromoelectric fields. These domains introduce a preferred
direction in the transverse plane—the orientation of the
color fields—thus breaking the rotational symmetry. In
turn, this leads to azimuthal correlations in the particle
production in the collision between a dilute proton (the
“projectile”) and the dense target: if two partons from the
projectile have similar impact parameters (so that they
scatter off the same saturation domain) and they are in the
same color state, then they will receive similar kicks and,
hence, emerge along nearby angles. The orientations of the
saturation domains are of course random, so their effects
will be washed out (by the averaging over the events) in the
calculation of single-inclusive particle production. But
nontrivial correlations survive in the production of two
(or more) particles, with very interesting features: the
respective spectra are naturally “semihard” [the flow
coefficients vnðpTÞ are peaked around the saturation scale
Qs], their strength decreases with increasing Qs (hence, in
particular, with increasing energy), and they are suppressed
in the limit where the number of colors Nc is large (they
scale like 1=N2

c). The “color field domain” model proposed
in [31,53–55] can be viewed too a (rather extreme) variant
of this scenario: as shown in [45], the effects of these color
field domains can be reproduced by fluctuating color fields
in CGC provided non-Gaussian correlations are assumed to
be important.
As it should be clear from the above discussion, the

CGC-based approaches assume the pp and pA collisions to
be of the “dilute-dense” type. This is quite natural when the
target is a large nucleus, such as Pb with A ¼ 208, and it is
also justified for pp collisions so long as one considers
particle production at very forward rapidities—meaning
that the gluon distribution from the target proton has been
subjected to the high-energy (or small-x) evolution and,
hence, is much denser than that of the projectile proton.
In this paper, we shall remain within the general CGC

framework of dilute-dense scattering, but we shall explore a
more elementary mechanism for generating azimuthal
correlations: the case where the rotational symmetry in
the transverse plane is broken simply by the impact
parameter (a two-dimensional vector b) of an impinging

parton from the projectile, i.e., by the very fact that a parton
hits the target disk at some point b which is away from the
center (b ≠ 0). Via its scattering, the parton will acquire
some transverse momentum p and the respective cross
section will generally dependent upon the angle ϕ made by
the vectors p and b. (From now on, we suppress the
subscript T on transverse momenta or coordinates, to
simplify writing.) For this to be the case, the cross section
must depend upon b in the first place; that is, the target
should have some inhomogeneity in the transverse plane.
Accordingly, this mechanism naturally generates azimuthal
asymmetries which probe the variation of the transverse
distribution of matter in the target. These asymmetries do
not require nonplanar gluon exchanges; hence, they admit a
nonzero limit when Nc → ∞.
The basic idea is not new—it has been originally

proposed in Refs. [56–58] and more recently revisited in
Ref. [32,59,60]. As in these previous works, we shall use
the high-energy factorization for particle production in
dilute-dense collisions in which the cross section for the
production of a parton with transverse momentum p at b is
related to the Fourier transform (r → p) of the S-matrix
Sðr; bÞ for the elastic scattering a color dipole with trans-
verse size r and impact parameter b (say, a quark-antiquark
dipole for the case of quark production, which we shall
focus here on, for definiteness). In this framework, the
azimuthal asymmetry results from the dependence of the
function Sðr; bÞ upon the dipole orientation (the angle θ
made by the vectors r and b).
As compared to the previous literature, we shall use a

different theoretical description for the gluon distribution in
the target, namely, the McLerran-Venugopalan (MV)
model [61], that we here extend to include inhomogeneity
in the transverse plane. Our respective extension will be
inspired by “saturation models” like IP-Sat [62–64] and
bCGC [65–67], which include a nontrivial b dependence
that has been tested and calibrated via fits to the HERA data
for diffractive vector meson production. (See also
Refs. [68–71] for other studies of the HERA phenomenol-
ogy which explore the impact-parameter dependence of the
saturation physics.) Note that one cannot directly use those
‘saturation models’ for the present purposes, since they are
formulated as parametrizations for the dipole S-matrix
which do not include any angular dependence. By contrast,
the MVmodel offers a description for the distribution of the
“valence” color sources in the target and allows for an
explicit calculation of the dipole scattering off the color
fields produced by those sources. In the previous literature,
this calculation has been performed for a homogeneous
target, but here we shall extend it to the case where the
valence color sources have a Gaussian distribution in
impact parameter (including the lumpiness effect for a
large nucleus). Because of the formal simplicity of the
model, wewill be able to obtain quasianalytic results for the
dipole S-matrix Sðr; bÞ, including its angular dependence,
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for both a smooth target (“a dense proton”) and a lumpy one
(“a large nucleus”). Such a quasianalytic treatment turns
out to be very useful for the physical interpretation of our
results.
One of the main conclusions of our analysis is that the

azimuthal asymmetry is controlled by soft exchanged
momenta, of the same order as the transverse momentum
scale introduced by the inhomogeneity of the target. So,
strictly speaking, these effects can only be marginally
addressed within our present, semiclassical, formalism,
which is inspired by perturbative QCD. But this also shows
the importance of having a realistic model for the b
dependence, which was already tested against the phenom-
enology. In fact, due to the dominance of soft exchanges, we
will also be led to consider the influence of a “gluon mass,”
namely, a mass parameter that controls the exponential
decay of the gluon fields at large values of b and mimics
confinement. Not surprisingly, this influence appears to be
important, on the same footing as that of the other
parameters of the model—the transverse scale which
characterizes the Gaussian distribution of the color sources
and the target saturation scale at b ¼ 0. These nonpertur-
bative aspects—the transverse inhomogeneity of the target
and the gluon confinement—have been differently modeled
in the previous related studies [32,56–60]. This may explain
the significant differences that can be observed between our
new results and the previous ones in the literature.
A priori, our model produces nonzero values for all the

even Fourier coefficients v2nðp; bÞ with n ≥ 1, but with a
strong hierarchy among them, jv2j ≫ jv4j ≫ jv6j etc. In
order to render the model tractable, we shall perform
additional approximations, which will preserve only the
information about the largest such a coefficient, the elliptic
flow v2ðp; bÞ. Using our (quasi)analytic results for the
dipole S-matrix, it will be quite easy to compute and study
this coefficient. We shall thus find that v2ðp; bÞ can be quite
large, v2 ≳ 0.1, in peripheral collisions, but it rapidly
decreases when moving towards more central collisions.
This corresponds to the fact that, in our model, the
transverse inhomogeneity is peaked at the edge of the
target.
We shall furthermore find that the effects of multiple

scattering are truly essential: they can even change the sign
of v2ðp; bÞ. Namely, v2ðpÞ is found to be negative (but also
tiny) for very large values of p, where the single-scattering
approximation applies, but it turns positive, due to multiple
scattering, at lower values—including the most interesting
physical regime where p is soft or semihard. A positive
v2ðp; bÞ means that the preferred direction of motion for a
produced particle is along its impact parameter b. In terms
of dipole scattering, it means that the scattering is stronger
(for a given dipole size r) when the dipole is aligned along
b rather than perpendicular on it.
Finally, as a function of p, v2 shows a maximum at a

value proportional to the target saturation momentum Qs

(say, as measured at b ¼ 0). Interestingly, this maximum
becomes less pronounced (broader and smaller) when
increasing Qs, i.e., when the target becomes denser. This
p dependence looks acceptable from the viewpoint of the
phenomenology and in fact it can even be adjusted to
reasonably describe the data in pþ Pb collisions at the
LHC with reasonable choices for the parameters.
So far, our discussion refers to a fixed value of the impact

parameter b: the quantity v2ðp; bÞ characterizes the dis-
tribution of the produced particles with respect to the
reaction plane in a particular event. Since the direction of b
(the “reaction plane angle”) is not an observable, it is
important to notice that the azimuthal asymmetry under
consideration can also be measured via multiparticle
correlations. Indeed, as previously mentioned, this asym-
metry is sizable only for sufficiently peripheral collisions,
in which the interaction region is relatively small. In pp
collisions, this region should be much smaller than any of
the colliding protons. In pA collisions, it could be as large
as the size of projectile proton, but this is still small
compared to the relevant impact parameters, of the order of
the nuclear radius. The partons from the projectile that
participate in such peripheral collisions have similar impact
parameters; hence, after the scattering they preferentially
propagate along nearby directions, namely, along their
average impact parameter. This in turn implies the exist-
ence of azimuthal asymmetries in the multiparticle corre-
lations; e.g., v2f2g—the elliptic azimuthal coefficient
extracted from two-particle correlations—should be non-
zero and positive.
The above considerations have consequences not only

for the multiparticle correlations, but also for the single
inclusive particle spectrum that we shall focus on in this
paper. They imply that the strength of the azimuthal
asymmetries is also controlled by the geometry of the
interaction region. For instance, we shall find that the
elliptic flow v2 is (roughly) proportional to the eccentricity
ε2, which is a measure of the projection of the impact
parameters of the participants quarks along the direction of
their average impact parameter. Such geometrical aspects
are clearly reminiscent of the classical discussion of
hydrodynamic flow in AA collisions—in both cases, a
flow of particles in the final state is generated via peripheral
collisions—but the underlying dynamics is of course
different: whereas in peripheral AA collisions the flow is
driven by the “pressure gradient” (the final-state inter-
actions) associated with the spatial asymmetry of the
interaction region, in the new mechanism of interest for
us here, the flow is rather a consequence of the angular
dependence of the amplitude for dipole scattering.
Although in this paper we shall discuss only the average

target geometry, it is quite clear that a similar mechanism
should also act when the target inhomogeneity is associated
with fluctuations—say, in the gluon distribution produced
by the high-energy evolution, or in the distribution of
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nucleons inside a lumpy nuclear target. In the presence of
fluctuations, azimuthal asymmetries can be also generated
via more central collisions, but they can be probed only via
multiparticle correlations, which are suppressed in the
multicolor limit Nc → ∞ [26]. This discussion suggests
that the mechanism to be discussed here is closely con-
nected to that from the “glasma” scenario, where the
azimuthal asymmetries are associated with fluctuations
leading to saturation domains [34–48]. Perhaps a new
aspect which is specific to our discussion is the emphasis
on peripheral collisions: we show that such collisions can
generate sizable azimuthal asymmetries already in the
absence of fluctuations. Since related to the (average)
target geometry, these asymmetries are expected to factor-
ize in the calculation of multiparticle correlations (e.g.,
c2f2g≃ v22, where c2f2g is the second-order cumulant
[49]) and also to survive in the large-Nc limit.
This paper is organized as follows: In Sec. II, we

concisely describe the factorization scheme that we use
for quark production in dilute-dense collisions and the
associated calculation of the azimuthal asymmetry coef-
ficients vnðp; bÞ in a given event. Section III contains
our new analytic results. After introducing the (impact-
parameter-dependent) MV model for the gluon distribution
in the dense target in Sec. III A, we present the calculation
of the dipole S-matrix with angular dependence, first in the
single-scattering approximation (in Sec. III B), next by
including the effects of multiple scattering, separately for
a proton (in Sec. III C) and for a large nucleus viewed
as a lumpy superposition of independent nucleons (in
Sec. III D). In Sec. IV, we present our numerical results
for v2ðp; bÞ and discuss their dependence upon various
parameters of the model as well as possible implications for
the phenomenology. We summarize our results in Sec. V.

II. COLOR-DIPOLE ORIENTATION AS THE
ORIGIN OF THE AZIMUTHAL ASYMMETRY

Consider particle production in a dilute-dense collision:
say a proton-nucleus (pA) collision, for definiteness, but
the target could also be another proton provided the
produced particle propagates at very forward rapidity.
We shall view this process at partonic level to leading
order in perturbative QCD at high gluon density (i.e., in the
CGC effective theory). For simplicity we shall ignore the
fragmentation of the produced parton into hadrons. That is,
we shall only compute the cross section for parton
production, with the parton chosen to be a quark. (The
discussion of gluon production in this particular setup
would be entirely similar.) To the accuracy of interest, the
correct physical picture is as follows: a quark collinear with
the projectile proton undergoes multiple scattering off the
dense gluon distribution of the target and thus acquires
some transverse momentum p. The multiple scattering can
be resummed to all orders within the eikonal approxima-
tion, which is most conveniently formulated in impact

parameter space (since the transverse coordinate of the
quark is not modified by the interactions). The cross section
is proportional to the modulus squared of the amplitude and
the quark impact parameters in the two amplitudes, direct
and conjugate, are different. As a result, one can express the
rapidity and p-distribution at fixed impact parameter in
terms of an effective qq̄ dipole S-matrix,

dσqðqA → qXÞ
dηd2pd2b

¼ xpqðxpÞ
Z

d2r
ð2πÞ2 e

−ip·rSðb; r; xgÞ

¼ 1

ð2πÞ2 xpqðxpÞ
~Sðb; p; xgÞ: ð1Þ

Here, p and b are the transverse momentum and the impact
parameter of the produced quark and η is its rapidity in the
center-of-mass (c.m.) frame. Furthermore, xp and xg are the
longitudinal momentum fractions of the partons participat-
ing in the scattering: the collinear quark from the proton
and a gluon from the wave function of the nucleus. Energy-
momentum conservation implies

xp ¼ pffiffiffi
s

p eη; xg ¼
pffiffiffi
s

p e−η; ð2Þ

where p≡ jpj and s is the c.m. energy squared for the
scattering between the proton and one nucleon from the
nucleus. The quantity Sðb; r; xgÞ≡ Sðx; y; xgÞ, with b≡
ðxþ yÞ=2 and r≡ x − y, is the forward S-matrix for the
scattering between a quark-antiquark dipole (with the quark
leg at x and the antiquark one at y) and the nucleus, for a
rapidity separation Y ¼ lnð1=xgÞ. Its Fourier transform
~Sðb; p; xgÞ plays the role of a generalized unintegrated
gluon distribution [also known as a gluon “transverse
momentum distribution” (TMD)] in the target. Since the
dipole has a finite size and an orientation, its scattering will
generally depend upon the angle θ between b and r. Via the
Fourier transform, this will introduce an anisotropy in the
cross section for quark production, i.e., a dependence upon
the angle ϕ between b and p. This anisotropy can be
characterized by the ensemble of Fourier components vn
(also known as “flow coefficients”), defined as

vnðp; bÞ≡
R
2π
0 dϕ cosðnϕÞ dσqðqA→qXÞ

dηd2pd2bR
2π
0 dϕ dσqðqA→qXÞ

dηd2pd2b

: ð3Þ

The Fourier moments involving sinðnϕÞ vanish because the
cross section is symmetric under the parity transformation
ϕ → −ϕ (the reflection with respect to the reaction plane).
The above expression can be also evaluated with the dipole
amplitude in the coordinate representation (this will be
useful e.g., when including the effects of multiple scattering
in the eikonal approximation). Rewriting Eq. (1) as
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dσqðqA → qXÞ
dηd2pd2b

¼ xpqðxpÞ
ð2πÞ2

Z
∞

0

drr

×
Z

2π

0

dθe−ipr cosðϕ−θÞSðb; r; θÞ; ð4Þ

one can perform the integral over ϕ in Eq. (3) with the help
of the following identity:

eiA cosϕ ¼
Xþ∞

n¼−∞
inJnðAÞeinϕ; ð5Þ

where JnðxÞ denotes the Bessel function of the first kind.
One thus obtains, e.g.,

v2ðp; bÞ ¼ −
R
rdrdθ cosð2θÞJ2ðprÞSðb; r; θÞR

rdrdθJ0ðprÞSðb; r; θÞ
; ð6Þ

v3ðp; bÞ ¼ −i
R
rdrdθ cosð3θÞJ3ðprÞSðb; r; θÞR

rdrdθJ0ðprÞSðb; r; θÞ
: ð7Þ

Notice that the quark distribution function of the proton has
canceled in the ratio. But the information about the gluon
distribution in the nucleus is still preserved in vn, via the
dipole S-matrix. If one neglects the angular dependence of
the latter [Sðb; rÞ → Sðb; rÞ], then vn ¼ 0 for any n ≥ 1
regardless of the precise shape of the target profile in b.
Notice also that a real contribution to v3 requires the
existence of an imaginary part in the dipole S-matrix;
hence, a nonzero v3 can be related to the odderon con-
tribution to dipole scattering [72,73].
So far, we have implicitly treated the projectile proton as

a pointlike object (indeed, we assumed that all its valence
quarks have the same impact parameter b). As we shall see,

this is indeed a good approximation when the target is a
large nucleus and for relatively central collisions, where the
nuclear matter distributions is quasihomogeneous. But this
is less justified for the case of a proton target, or for
peripheral collisions off a nucleus, which are the cases of
main interest for what follows. Fortunately, this can be
easily remedied (at least at a formal level) by replacing the
standard quark distribution xpqðxpÞ with its generalized
version [a “generalized parton distribution” (GPD)], which
includes impact parameter dependence inside the projectile,
xpqðxpÞ → xpqðxp; bÞ, where b now refers to the position
of a quark relative to the center of its parent proton. Then
Eqs. (1) and (3) should be replaced by

dσqðqA → qXÞ
dηd2pd2B

¼ 1

ð2πÞ2
Z

d2bxpqðxp; b − BÞ ~Sðb; p; xgÞ;

ð8Þ

and, respectively,

vnðp;BÞ≡
R
2π
0 dΦ cosðnΦÞ dσqðqA→qXÞ

dηd2pd2BR
2π
0 dΦ dσqðqA→qXÞ

dηd2pd2B

; ð9Þ

where B denotes the impact parameter of the proton with
respect to the center of the target and Φ is the angle made
by the vectors p and B. A common prescription in the
literature, which we here adopt as well, is to assume the
factorization of the b dependence inside the projectile,
xpqðxp; bÞ≃ xpqðxpÞfðbÞ, with

R
d2bfðbÞ ¼ 1. Under this

assumption, the generalization of Eq. (6) to an extended
projectile is easily found as

v2ðp; BÞ ¼ −
R
bdbdα cosð2αÞfðjb − BjÞ R rdrdθ cosð2θÞJ2ðprÞSðb; r; θÞR

bdbdαfðjb − BjÞ R rdrdθJ0ðprÞSðb; r; θÞ
; ð10Þ

where α is the angle between b and B and we have also assumed that the proton distribution is isotropic, fðbÞ ¼ fðjbjÞ.
We shall also need the eccentricity ε2 of the interaction region. Writing the two-dimensional impact parameter of a

participating quark as b ¼ ðx; yÞ, where the x and z axes define the reaction plane (that is, the x axis is parallel to the
direction of the vector B, the impact parameter of the proton), then ε2 can be estimated as

ε2ðp;BÞ ¼
hx2 − y2i
hx2 þ y2i ¼

hb2 cosð2αÞi
hb2i ;

¼
R
bdbdαb2 cosð2αÞfðjb − BjÞ R rdrdθJ0ðprÞSðb; r; θÞR

bdbdαb2fðjb − BjÞ R rdrdθJ0ðprÞSðb; r; θÞ
; ð11Þ

where the brackets denote the averaging over the quark
impact parameters with weight function given by the local
differential cross section ∝ ~Sðb; p; xgÞ and also the angular
average over Φ (i.e., over the direction of propagation of

the produced particles). As before, α is the angle between b
and B; hence, x ¼ b cos α and y ¼ b sin α (see also Fig. 1).
In fact, the quantity that is generally referred to as the

“eccentricity” in the literature is the “momentum-integrated”
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version of Eq. (11), that is, the quantity ε2ðBÞ which is
obtained by separately integrating the numerator and
denominator over p, with measure

R
pdp. The result of

this integration turns out to be very simple and, in particular,
independent of the dipole scattering, because of “color
transparency”: a color dipole with zero transverse size
cannot scatter, meaning that Sðb; r; θÞ → 1 as r → 0. This
immediately implies the following sum rule:

Z
d2p
ð2πÞ2

~Sðb; pÞ ¼ 1 ⇒
Z

pdp
Z

rdrdθJ0ðprÞSðb; r; θÞ

¼ 2π: ð12Þ

This sum rule is in fact the expression of probability
conservation: as manifest from Eq. (8), ~Sðb; pÞ can be
interpreted as the probability density for a quark incident
at b to acquire a transverse momentum p. Clearly, the total
probability for the quark to emerge with any momentum
must be equal to 1. Using Eqs. (11) and (12), one finds

ε2ðBÞ ¼
R
bdbdαb2 cosð2αÞfðjb − BjÞR

bdbdαb2fðjb − BjÞ : ð13Þ

As anticipated, this is a purely geometrical quantity, without
any information about the scattering of the dipole: it merely
shows how the projectile is “seen” from the center of the
target. It is quite obvious that ε2ðBÞ vanishes for B ¼ 0 and
that it approaches to 1 when B → ∞ (since in that limit the
ratio hy2i=hx2i approaches to zero, meaning that α → 0 as
well). This behavior will be confirmed by the explicit
calculations to be presented later.

III. ELLIPTIC FLOW FROM DIPOLE
ORIENTATION IN THE MV MODEL

A. Dipole scattering in the
McLerran-Venugopalan model

Provided that the gluon energy fraction xg probed by the
scattering is not too low, one can ignore the high-energy
evolution of the nuclear gluon distribution and describe the
latter within the MV model [61]. In this model, the nucleus
is described as a collection of independent color sources
(the “valence quarks”) with a Gaussian color charge
distribution in the transverse plane,

hρaðxÞρbðyÞi ¼ δabδð2Þðx − yÞμðxÞ; ð14Þ

with μðxÞ the color charge squared per unit area in the
transverse plane. In the original formulation of the MV
model, as applying to a (very) large nucleus, there was no
explicit impact-parameter dependence: the color charge
distribution was assumed to be uniform, μðbÞ ¼ μ0, within
a large disk with radius RA ∝ A1=3, with A the atomic
number. However, as already mentioned, the inhomoge-
neity of the target in the transverse plane is essential for the
physical effects that we are currently interested in. So, in
what follows we shall propose a generalization of the MV
model which includes a physically motivated impact-
parameter dependence (inspired by the fits to the HERA
data). We shall first present this dependence for the case
where the target is a single nucleon (say, any of the A
nucleons composing a large nucleus), and then extend the
model to a nuclear target in Sec. III D. But the case of a
proton target is also interesting by itself—though the
applicability of the MV model to this case is of course
questionable—in view of the phenomenology of flowlike
effects in high-multiplicity events in pp collisions.
The profile μðbÞ of the proton color charge distribution in

the transverse plane will be chosen to be a Gaussian, in
agreement with saturation fits [62–64,67] to the HERA data
on diffraction and vector meson production in deep
inelastic scattering [its Fourier transform ~μðΔÞ will be later
needed],

μðbÞ ¼ μ0e−b
2=4R2

;

~μðΔÞ ¼
Z

d2be−ib·ΔμðbÞ ¼ 4πR2μ0e−Δ
2R2

: ð15Þ

The overall factor μ0, with dimensions of mass squared,
is proportional to the total color charge squared of the
valence partons; e.g., for a proton target with Nc valence
quarks, one can write 4πR2ðN2

c − 1Þμ0 ¼ g2CFNc, or
μ0 ¼ αs=ð2R2Þ. In practice, this quantity μ0 will be traded
for the saturation momentum in the center (b ¼ 0) of the
target, a quantity which is constrained by the fits to the
HERA data [see Eq. (35) below]. The scale R which fixes
the width of the b distribution will be taken too from fits

FIG. 1. A peripheral pp collision. The disk representing the
target is shaded grey to suggest the fact that this proton is denser.
The dipole with size r can scatter off the target at any of the points
within the almond-shaped interaction region.
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to the HERA data (more precisely from the fits using the
IP-Sat model in Refs. [62,64]). A typical value emerging
from these fits is R≃ 0.3 fm. Notice that, with our present
conventions, the “proton size” (in the sense of the region in
impact-parameter space where the valence color charges are
distributed) is 2R≃ 0.6 fm, and not R. Indeed, the expo-
nent of the Gaussian in Eq. (15) becomes equal to one when
b ¼ 2R. Also, for Δ ¼ 0, one has ~μð0Þ ¼ 4πR2μ0, showing
that the natural “proton area” is 4πR2, and not πR2.
The gauge potential created by the ultrarelativistic color

charges is simply the two-dimensional Coulomb field,

A−
a ðxÞ ¼

Z
d2zGðx − zÞρaðzÞ;

GðbÞ≡
Z

d2q
ð2πÞ2

eiq·b

q2
≃ 1

4π
ln

1

b2m2
; ð16Þ

where m is an infrared cutoff, physically associated with
confinement, m ∼ ΛQCD. [So, the second estimate for GðbÞ
given above applies only for sufficiently small distances
b≲ 1=m.] This implies that the distribution of the color
fields is Gaussian as well, with two-point correlation

hA−
a ðxÞA−

b ðyÞi ¼ δabγðx; yÞ; ð17Þ

where

γðx; yÞ≡
Z

d2zGðx − zÞGðy − zÞμðzÞ

¼
Z

d2q
ð2πÞ2

d2q0

ð2πÞ2 e
iq0·xþiq·y ~μðq0 þ qÞ

q02q2
: ð18Þ

In the MV model and in the eikonal approximation,
the projectile dipole independently scatters off the color
charges in the nucleus. Accordingly, its multiple scattering
exponentiates, as in the Glauber approximation,
S ¼ expf−N2gg, where N2gðx; yÞ is the amplitude for a
single scattering via the exchange of two gluons,

N2gðx; yÞ ¼
g2CF

2
½γðx; xÞ þ γðy; yÞ − 2γðx; yÞ�;

¼ g2CF

2

Z
d2q0

ð2πÞ2
d2q
ð2πÞ2

~μðq0 þ qÞ
q02q2

× ½eiq0·x − eiq
0·y�½eiq·x − eiq·y�: ð19Þ

Note that, unlike the valence color charges, which are
effectively confined in the transverse plane within a disk
with radius R, cf. Eq. (15), the color fields created by these
charges (the small-x gluons) can be delocalized over much
larger distances, due to the slow decay of the two-dimen-
sional Coulomb propagator at large distances. In particular,
it is easy to check that for very large impact factors x ∼ y ≫
R (with x≡ jxj and y≡ jyj), the dipole amplitude predicted

by this model shows a power tail: N2gðx; yÞ ∝ ðb · rÞ2=b4,
with r ¼ x − y and b ¼ ðxþ yÞ=2.
At this stage, it is convenient to change variables, from x,

y to r, b, and from q0, q to Δ, k, with k ¼ ðq0 − qÞ=2 and
Δ ¼ q0 þ q. For the physical discussion to follow, it is
useful to keep in mind the physical meaning of the
momenta k and Δ from the viewpoint of our original
problem, that of quark production: (i) k is the average
transverse momentum transmitted by the nucleus to the
quark via a single collision and (ii) Δ is the difference
between the transverse momenta acquired by the quark
in the direct amplitude and the complex conjugate
amplitude, respectively; as such, it is a measure of the
additional momentum transfer associated with the inho-
mogeneity of the target. Clearly, Δ is a soft momentum,
Δ ∼ 1=R ∼ ΛQCD, whereas is generally semihard, that is, it
is either comparable to the final momentum p of the
produced quark, or to the saturation momentum QsðbÞ of
the target. Yet, soft values for k will be important too, when
discussing the flow coefficients in the presence of multiple
scattering.
We thus obtain

N2gðb; rÞ ¼
g2CF

2

Z
d2Δ
ð2πÞ2

d2k
ð2πÞ2

~μðΔÞ
ðkþ Δ=2Þ2ðk − Δ=2Þ2

× eiΔ·b½eiΔ·r=2 þ e−iΔ·r=2 − 2eik·r�: ð20Þ

The first two terms within the square brackets, which are
independent of k, represent “tadpole” contributions where
the two gluons exchanged with the target are attached to a
same fermion leg (the quark or the antiquark). The final
term, which is negative, refers to “exchange” contributions,
where one gluon is attached to the quark leg and the other to
the antiquark.
Since ~μðΔÞ is truly a function of Δ≡ jΔj, it is quite

obvious that N2gðb; rÞ is an even function of b and also an
even function of r; hence, it depends upon θ (the angle
between b and r) only via the squared dot product ðb · rÞ2.
This in turn implies that all the odd “flow coefficients,” like
the “radial flow” v1 and the “triangular” one v3, must
vanish. In what follows, we shall compute the elliptic flow
v2. For pedagogy, we shall first present the respective
calculation in the single-scattering approximation.

B. The single-scattering approximation

The single-scattering approximation Sðb; rÞ≃ 1 −
N2gðb; rÞ applies as long the dipole is small enough for
its transverse resolution Q2 ≡ 1=r2 to be much larger than
the (local) saturation momentum QsðbÞ at its impact
parameter. Equivalently [since pr ∼ 1 by virtue of the
Fourier transform in Eq. (1)], the produced quark is
relatively hard, with a transverse momentum p ≫ QsðbÞ.
The saturation scale QsðbÞ in the MV model will be more
precisely defined in the next subsection, where we discuss
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multiple scattering. Here, we anticipate that this is a
semihard scale, comparable to, or larger than, the momen-
tum scale 1=R introduced by the impact-parameter distri-
bution μðbÞ.
To compute v2 in the single-scattering approximation, it

is convenient to first perform the Fourier transform of the
dipole amplitude, N2gðb; rÞ → ~N2gðb; pÞ, and then use
Eq. (3). It is quite clear that the tadpole pieces in
Eq. (20) do not significantly contribute in the kinematics
of interest: via the Fourier transform, the respective
exponentials e�iΔ·r=2 select Δ ¼ 2p, but the function
~μð2pÞ is exponentially suppressed for 2p ≫ 1=R. As for
the Fourier transform of the exchange piece in Eq. (20), this
is simply obtained by replacing k → p. We deduce

~N2gðb; pÞ ¼
Z

d2reip·rN2gðb; rÞ

¼ −g2CF

Z
d2Δ
ð2πÞ2

~μðΔÞ
ðpþ Δ=2Þ2ðp − Δ=2Þ2 e

iΔ·b:

ð21Þ

Physically, the fact that k ¼ p means that the momentum
carried by the final quark must be acquired via its only
collision with the target.
Equation (21) can be further simplified by using the fact

that pR ≫ 1, whereas the integral is controlled by softer
values Δ≲ 1=R. Accordingly, one can expand the inte-
grand in powers of Δ=p and keep only the leading order
piece,

1

ðpþ Δ=2Þ2ðp − Δ=2Þ2 ¼
1

ðp2 þ Δ2

4
Þ2 − ðp · ΔÞ2

≈
1

p4

�
1 −

Δ2

2p2
þ ðp · ΔÞ2

p4

�
þ � � � ;

ð22Þ

where the dots stand for terms of order ðΔ=pÞ4. After also
using Eq. (15), we are led to a Gaussian integral

4πR2

Z
d2Δ
ð2πÞ2 e

−Δ2R2ΔiΔjeib·Δ

¼−4πR2
∂2

∂bi∂bj
Z

d2Δ
ð2πÞ2 e

−Δ2R2

eib·Δ;

¼−
∂2

∂bi∂bj e
−b2=4R2 ¼ 1

2R2

�
δij−

bibj

2R2

�
e−b

2=4R2

: ð23Þ

Putting everything together and using the trigonometric
identity 2 cos2 ϕ − 1 ¼ cosð2ϕÞ, we finally deduce

− ~N2gðb; pÞ≃ g2CF

p4
μðbÞ

�
1 −

b2

8p2R4
cosð2ϕÞ

�
: ð24Þ

This holds up to terms suppressed by higher powers of
1=ðpRÞ2. In this approximation, the dipole amplitude is
proportional to μðbÞ; hence, it is as localized in b as the
valence color charges from the target. This is so because the
scattering involves the exchange of a hard gluon, with
momentum p, and this exchange is quasilocal.
The leading-order contribution at large p, proportional to

1=p4, is independent of ϕ. This is recognized as the
standard result for the particle spectrum produced via a
single hard scattering. The angular dependence enters via
the subleading term ∝ 1=p6, whose sign is quite remark-
able: this is such that the cross section for quark production
[which in the present approximation is proportional to
~Sðb; pÞ≃ − ~N2gðb; pÞ] is largest when θ ¼ π=2. Physically,
this means that a quark produced via a single scattering has
more chances to propagate along a direction which is
perpendicular on its impact parameter (p⊥ b), rather than
parallel to it (p ∥ b). In turn, this implies that the elliptic
flow coefficient v2 is negative in this regime. Namely, by
inserting Eq. (24) into Eq. (3), one finds

v2ðp; bÞ≃
R
π
−π dϕ cosð2ϕÞ½1 − b2

8p2R4 cosð2ϕÞ�R
π
−π dϕ½1 − b2

8p2R4 cosð2ϕÞ�

¼ −
b2

16p2R4
: ð25Þ

Except possibly for its sign, which is somewhat unex-
pected, the above result for v2 shows the expected trends: it
vanishes when b → 0, since for such central collisions the
orientation of the incoming dipole plays no role, and it
decreases quite fast when increasing the momentum p of
the produced quarks, as this corresponds to exploring
dipoles with very small sizes r ≪ R.
The above calculation also illustrates another generic

feature of the v2 (more generally, of the azimuthal
anisotropy) generated by the current mechanism: this is
directly related to the target inhomogeneity in the trans-
verse plane, i.e., it is proportional to the derivatives of the b
distribution μðbÞ. It should be furthermore clear that the
higher azimuthal harmonics cosð2nϕÞ with n ≥ 2 would be
generated via the higher-order terms in the large-p expan-
sion; hence, the corresponding Fourier coefficients are
parametrically suppressed—by powers of b2=ðp2R4Þ ∼
1=ðpRÞ2 when b ∼ R—compared to the elliptic flow v2.
Notice that, in this single-scattering approximation, the

overall normalization μ0 of the charge-charge correlator,
cf. Eq. (15), and also the coupling constant g2CF, drop out
from the calculation of v2. This last feature will be of course
modified by the inclusion of multiple scattering, which
becomes compulsory for softer momenta p≲QsðbÞ and
will be discussed in the next section.
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C. Adding multiple scattering

The multiple scattering between the quark projectile and
the target becomes important when the transverse momen-
tum of the produced particle p is comparable to, or smaller
than, the nuclear saturation momentum QsðbÞ. This is
actually the most interesting situation for the phenomenol-
ogy of flow in pp and pA collisions at the LHC, as we shall
see. In that case, we must return to the general expression
for the dipole S-matrix (within the framework of the MV
model, of course), namely,

Sðb; rÞ ¼ expf−N2gðb; rÞg; ð26Þ

with N2g as given in Eq. (20). Because of the exponentia-

tion, the Fourier transform Sðb; rÞ → ~Sðb; pÞ is more
complicated. Physically this reflects the fact that the
momentum p of the produced quark gets accumulated
via several scatterings and, hence, needs not be identified
with the momentum k transferred by a single collision. The
typical situation, to be referred to as soft multiple scatter-
ing, is such that the number of quasi-independent scatter-
ings is quite large, so that the typical value of k is much
smaller than the final momentum p.
In order to isolate the angular dependence of the S-

matrix, one may be tempted to perform the small-Δ
expansion as in Eq. (22) before performing the Fourier
transform. However, this manipulation, which corresponds
to an expansion in powers of Δ2=k2, would generate
infrared divergences, leading to a result which is mean-
ingless except for the leading-order term, which has no
angular dependence. For instance, to first order in Δ2=k2,
one finds

N2gðb; rÞ≃ g2CF

2

Z
d2Δ
ð2πÞ2

d2k
ð2πÞ2

~μðΔÞ
k4

�
1−

Δ2

2k2
þðk ·ΔÞ2

k4

�

× ½eiΔ·r=2þ e−iΔ·r=2− 2eik·r�eiΔ·b: ð27Þ

Here we have assumed that k ≫ Δ, yet if one attempts to
compute the above integral over k (for fixed Δ), one faces
strong infrared (k → 0) divergences, showing that this
expansion is not really justified. To better see these
divergences, notice that for sufficiently soft k and Δ, the
r dependence within Eq. (27) can be expanded out,

1

2
½eiΔ·r=2 þ e−iΔ·r=2 − 2eik·r�≃ −ik · rþ 1

2
ðk · rÞ2

−
1

8
ðΔ · rÞ2; ð28Þ

where the linear term in the rhs vanishes (by parity) after
the k integration.
Using the above, one sees that the dominant term ∝ 1=k4

in the large-k expansion in Eq. (27) gives rise to a
logarithmic integration for momenta k within the range

Δ ≪ k ≪ 1=r. This is a well-known result [51]: the (angle-
averaged) scattering amplitude Nðb; rÞ for a small dipole
in the MV model is logarithmically sensitive to all trans-
ferred momenta within the interval m ≪ k ≪ 1=r, where
m ∼ ΛQCD is the infrared cutoff introduced in Eq. (16). In
the present context, where the target is inhomogeneous,
there is no genuine infrared divergence in the calculation—
the associated momentum Δ effectively acts as an infrared
cutoff on k—but we recover the logarithmic enhancement
of the amplitude averaged over dipole orientations.
However, the second-order terms in the expansion in

Eq. (27), which in particular carry an angular dependence,
appear to develop a quadratic infrared divergence as k → 0.
This shows that this particular effect—the angular depend-
ence of the dipole amplitude—is in fact controlled by soft
exchanged momenta, k ∼ Δ, whose contribution cannot be
computed via the expansion in powers of Δ2=k2.
Importantly, this also means that, for semihard momenta
p≲QsðbÞ, one cannot perform a reliable calculation of v2
from first principles—not even within the limits of the MV
model. Indeed, the soft momenta k ∼ Δ≲ 1=R lie within
the realm of the nonperturbative confinement physics, so
their description within the MV model is not really
justified. This being said, this model offers a convenient
setup for at least approaching the physics of the dipole
orientation, while at the same time being consistent with the
pQCD description of the angular-averaged amplitude. In
that sense, we believe that the results of our subsequent
analysis are still useful for qualitative and even semi-
quantitative studies of the phenomenology.
We thus conclude that, for the present purposes, one

cannot expand the double integral in Eq. (20) in powers of
Δ2=k2. Yet, the above discussion points towards another
simplification, which is quite useful in practice: within the
interesting regime of soft multiple scattering, all the
relevant contributions come from relatively small trans-
ferred momenta k ≪ 1=r, for which one can expand the r
dependence as shown in Eq. (28). This yields

N2gðb; rÞ≃ g2CF

2
rirj

Z
d2Δ
ð2πÞ2

d2k
ð2πÞ2

×
ðkikj − ΔiΔj=4Þ~μðΔÞ

½ðkþ Δ=2Þ2 þm2�½ðk − Δ=2Þ2 þm2� e
iΔ·b:

ð29Þ

We have introduced here the infrared cutoff m as a gluon
mass in the two-dimensional Coulomb propagator,

GðbÞ ¼
Z

d2q
ð2πÞ2

eiq·b

q2 þm2
¼ 1

2π
K0ðmbÞ; ð30Þ

where K0ðxÞ is the modified Bessel function of the second
kind. After this modification, the propagatorGðbÞ shows an
exponential decay at large transverse separations mb ≫ 1,
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which mimics confinement. As already stressed, the inser-
tion of this mass m is not required by infrared divergences:
the integral over k in Eq. (29) is well defined in the
“infrared” (k → 0) even whenm ¼ 0; indeed, we shall later
study the limitm → 0 of our results. Rather, the gluon mass
m is needed in order to restrict the phase space allowed to
very soft momenta k ∼ ΛQCD, which control the physics of
the dipole orientation. (In real QCD, this phase space would
be of course restricted by confinement.) On the other hand,
the integral over k in Eq. (29) develops a logarithmic
“ultraviolet” (k → ∞) divergence; it is understood that this
divergence is cut off at the scale k ∼ 1=r [see Eq. (32)
below for details].
It is also interesting to notice that the expansion (28) in

powers of k · r does not commute with the single-scattering
approximation studied in the previous section: in the latter,
the exchanged momentum k is identified (via the Fourier
transform) with the final momentum p; hence, k · r ¼ p ·
r ∼Oð1Þ and a finite-order expansion in powers of k · r
would be incorrect. Accordingly, a calculation using S ¼
expf−N2gg together with Eq. (29) for N2g cannot

reproduce the value of v2 at very large momenta p ≫
QsðbÞ previously obtained in Eq. (25). More precisely, such
a calculation would correctly reproduce the leading-order
contribution ∝ 1=p4 to ~N2gðb; pÞ in Eq. (24), which is
independent of ϕ, but not also its subleading piece ∝ 1=p6,
which carries the interesting ϕ dependence.
The double integral in the rhs of Eq. (29) has a relatively

simple tensorial structure, which immediately implies that
its result must be written as a linear combination of the
following two rank-2 tensors: δij and bibj=b2.
Equivalently, the ensuing approximation for N2gðb; rÞ≡
N2gðb; r; θÞ has the following generic structure:

N2gðb; r; θÞ ¼ N 0ðb; rÞ þN θðb; rÞ cosð2θÞ; ð31Þ

without higher Fourier components. This is easily verified
via direct calculations of the angular integrals in Eq. (29),
which can be analytically completed. This is detailed in
Appendix A, from which we here quote the final results,

N 0ðb; rÞ ¼
Q2

sðbÞr2
4

ln

�
1

r2m2
þ e

�
þ g2CF

4ð2πÞ2 r
2

Z
∞

0

dΔΔ ~μðΔÞJ0ðΔbÞ

×
Z

∞

0

dkk

�
k2 − Δ2=4

ðk2 þ Δ2=4þm2Þððk2 þ Δ2=4þm2Þ2 − k2Δ2Þ1=2 −
k2

ðk2 þm2Þ2
�
; ð32Þ

and, respectively,

N θðb; rÞ ¼
g2CF

4ð2πÞ2 r
2

Z
∞

0

dΔΔ ~μðΔÞJ2ðΔbÞ
Z

∞

0

dkk

�
k2 þ Δ2=4

ðk2 þ Δ2=4þm2Þððk2 þ Δ2=4þm2Þ2 − k2Δ2Þ1=2

þ 2

Δ2
−

2ðk2 þ Δ2=4þm2Þ
Δ2ððk2 þ Δ2=4þm2Þ2 − k2Δ2Þ1=2

�
: ð33Þ

The above expression for N 0ðb; rÞ has been obtained from
Eq. (A4) in Appendix A via the following manipulations:
We have first subtracted the dominant behavior of the
integrand at high k and then replaced the subtracted piece
via its following regularized form,

g2CF

4
r2
Z

d2Δ
ð2πÞ2

d2k
ð2πÞ2

k2 ~μðΔÞ
ðk2 þm2Þ2 e

iΔ·b

≡Q2
sðbÞr2
4

ln

�
1

r2m2
þ e

�
; ð34Þ

with the impact-parameter-dependent “saturation momen-
tum” QsðbÞ defined as

Q2
sðbÞ≡ αsCFμðbÞ ¼ Q2

0se
−b2=4R2

: ð35Þ

Q2
0s ¼ αsCFμ0 is the central value of the saturation

momentum at b ¼ 0. The coefficient of the logarithm
lnð1=r2m2Þ in the rhs of Eq. (34) unambiguously follows
from the logarithmic integration over the range
m ≪ k ≪ 1=r, whereas the constant term under the log
specifies our renormalization scheme. Notice that all the
results throughout this paper depend upon the QCD
coupling αs, the fundamental Casimir CF and the two-
dimensional density μ0 of color charge squared only via
this quantity Q2

0s, to be treated as a free parameter of our
model. In spite of our notations, Q2

sðbÞ is not exactly the
saturation scale in the present model, but it is comparable to
it, as we shall shortly argue.
The first piece in the rhs of Eq. (32), proportional to

Q2
sðbÞ, would be the only one to survive in the case of a

homogeneous target, i.e., when ~μðΔÞ ∝ δð2ÞðΔÞ. This piece
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has an apparent logarithmic divergence in the limit m → 0.
However, in the present context, where the target is
inhomogeneous, this divergence is compensated by a
corresponding divergence generated by the second, inte-
gral, term in Eq. (32). This is demonstrated in Appendix A,
where we will also show that, when m → 0, the mass
parameter m gets replaced by 1=R within the argument of
the logarithm. This being said, the insertion of a nonzero
gluon mass m is still necessary, on physical grounds.
The saturation momentum is more precisely defined

by the condition that the scattering becomes strong:
N2gðb; r; θÞ ∼ 1. This condition is controlled by the ori-
entation-averaged piece N 0ðb; rÞ, which is numerically
(much) larger than the pieceN θðb; rÞ encoding the angular
dependence. This is manifest for sufficiently small dipoles
r ≪ 1=m, when the first piece in N 0ðb; rÞ is enhanced by
the large logarithm lnð1=r2m2Þ, but it is generally true for
all the values of r and m of relevance for this work (see,
e.g., Fig. 2). The actual saturation momentum in the present
setup, to be denoted as QsðbÞ, is conveniently defined by
the conditionN 0ðb; rÞ ¼ 1 when r ¼ 2=QsðbÞ. This could
be numerically extracted (as a function of R and m), if
needed, but for the present purposes it will be sufficient to
use the following qualitative estimate, which strictly holds
to leading-logarithmic accuracy:

Q2
sðbÞ≃Q2

sðbÞ ln
Q2

sðbÞ
m2

: ð36Þ

We have previously argued that the angular dependence
of the dipole amplitude comes from relatively soft trans-
ferred momenta k ∼ Δ. It is interesting to check that at the
level of Eq. (33). To this aim, let us take the limit m → 0 in

that equation. (The corresponding limit for N 0 will be
discussed in Appendix A.) Using

½ðk2 þ Δ2=4þm2Þ2 − k2Δ2�1=2 → jk2 − Δ2=4j
when m → 0; ð37Þ

it is easy to see that the expression within the square
brackets inside the integrand becomes

1

jk2 − Δ2=4j þ
2

Δ2
−

2ðk2 þ Δ2=4Þ
Δ2jk2 − Δ2=4j ¼ ΘðΔ=2 − kÞ 4

Δ2
;

ð38Þ

so that the whole contribution to N θðb; rÞ indeed comes
from soft momenta k ≤ Δ=2. As a matter of fact, the
ensuing integral over k is dominated by its upper limit Δ=2
and the final result for m ¼ 0 takes a rather simple form,

N θðb; rÞjm¼0 ¼
1

2
×

g2CF

4ð2πÞ2 r
2

Z
∞

0

dΔΔ ~μðΔÞJ2ðΔbÞ

¼ Q2
0sr

2
R2

b2

�
1 −

�
1þ b2

4R2

�
e−

b2

4R2

�
: ð39Þ

Though formally well defined, the limitm → 0 ofN θðb; rÞ
is physically meaningless, since very soft momenta k≲m
are not allowed by QCD confinement. In that sense, the
“massive” case in Eq. (33) is more useful in practice,
though our current treatment of confinement is merely
heuristic. To illustrate the uncertainty introduced by this
treatment, we represent in the left panel of Fig. 2 the result
of the double integral in Eq. (33) as a function of b for
several values ofm, includingm ¼ 0. As one can see there,
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FIG. 2. Left: The function N θðb; rÞ which encodes the angular dependence of the dipole amplitude in the present approximations is
numerically computed according to Eq. (33) and plotted as a function of b for a fixed dipole size r ¼ 0.5 fm and various values of the
infrared cutoff m [including m ¼ 0, cf. Eq. (39)]. Right: The corresponding plots for the amplitude averaged over the angles N 0ðb; rÞ,
cf. Eq. (32). All the curves are obtained using R2 ¼ 2 GeV−2 and Q2

0s ¼ 0.165 GeV2.
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the m dependence become stronger with increasing b, a
feature which is easy to understand: the integral over k is
effectively restricted to values m≲ k≲ Δ and larger values
for the impact parameter b correspond to smaller values
for Δ.
In Fig. 2, one also sees that the function N θðb; rÞ

develops a maximum at a value of b which is proportional
to R and roughly independent of m. For m ¼ 0, Eq. (39)
shows that N θ ∝ b2 at small b ≪ R and we expect this to
remain true for any value of m. Another interesting aspect
of the dipole amplitude in Eq. (39) is the fact that it exhibits
a power tail ∝ 1=b2 at sufficiently large distances b≳ R.
This is in agreement with the discussion after Eq. (19): it
reflects the fact that the angular dependence of the dipole
amplitude is controlled by soft gluon exchanges, for which
there is no confinement in the limit m → 0. For a nonzero
gluon massm, this power-law tail will of course be replaced
by the decaying exponential e−mb, which mimics confine-
ment. This behavior too is visible in Fig. 2.
For more clarity, we also plot the angular-averaged

amplitude N 0ðb; rÞ, under the same assumptions as for
N θðb; rÞ (see the right panel of Fig. 2). The fact that for
small values of the gluon mass m ≤ 0.2 GeV, the maxi-
mum ofN 0ðb; rÞ as a function of b appears to be displaced
at nonzero values for b is probably an artifact of the model.
But this also shows that the second, integral, term in the rhs
of Eq. (32) is indeed important (by itself, this contribution
is negative for sufficiently small values of b, but it becomes
positive at b≳ R). This feature will have no incidence on
our subsequent numerical studies of pp collisions, where
we shall restrict ourselves to larger values m ≥ 0.3 GeV.
For such values, the maximum of N 0ðb; rÞ is located at
b ¼ 0, as expected on physical grounds.
Using the above results for N2g together with S ¼

expf−N2gg and the representation (6) for the elliptic flow
coefficient v2, we finally deduce the following estimate for
the latter:

v2ðp; bÞ

¼ −
R
rdre−N 0ðb;rÞJ2ðprÞ

R
dθe−N θðb;rÞ cosð2θÞ cosð2θÞR

rdre−N 0ðb;rÞJ0ðprÞ
R
dθe−N θðb;rÞ cosð2θÞ ;

¼
R
rdre−N 0ðb;rÞJ2ðprÞI1ðN θðb; rÞÞR
rdre−N 0ðb;rÞJ0ðprÞI0ðN θðb; rÞÞ

; ð40Þ

where I0 and I1 (the modified Bessel functions of the first
kind) have been generated via

Z
2π

0

dθe−z cosð2θÞ ¼ 2πI0ðzÞ;Z
2π

0

dθe−z cosð2θÞ cosð2θÞ ¼ −2πI1ðzÞ: ð41Þ

I1ðzÞ is an odd function which has the same sign as its
argument. In fact, the quantity N θ is numerically small in

the physical regime of interest (see Fig. 2); hence, one can
use the approximation I1ðN θðb; rÞÞ≃N θðb; rÞ=2. This
shows that v2ðp; bÞ is significantly large only for peripheral
collisions, i.e., for impact parameters b ≳ R, where lies the
peak of the functionN θðb; rÞ. It furthermore shows that the
elliptic flow generated via multiple scattering is positive
[74]; that is, it has the opposite sign as compared to the case
of a single hard scattering discussed in Sec. III B.
Via Eq. (31), the sign of v2 can be related to properties of

dipole scattering. Namely, the fact that N θðb; rÞ is positive
implies that the scattering is stronger when the dipole
orientation is (anti)parallel to its impact parameter (θ ¼ 0
or θ ¼ π) than for a dipole perpendicular on b (θ ¼ π=2).
Equivalently, the S-matrix Sðb; rÞ, which measures the
dipole survival probability, is larger when r⊥ b than for
r ∥ b (see Fig. 3). This property is studied in more detail in
Fig. 4: in the left panel, we show the dipole S-matrix as a
function of θ (for two different dipole sizes and a fixed
impact parameter); on the right, we show the scattering
amplitude N2gðb; r; θÞ as a function of b for a fixed value of
r and two extreme orientations: θ ¼ 0 and θ ¼ π=2. As
one can see, the difference between “parallel” and
“perpendicular” scattering increases with the dipole size
r and also with the impact parameter b. These features are
intuitively understandable since a pointlike dipole should
not be sensitive to its orientation. In addition, for very small
impact factors b≲ R ¼ 0.3 fm, the target looks quasiho-
mogeneous and then the dipole orientation is irrelevant. We
therefore expect the associated v2 to follow a similar trend.
This will be confirmed by the numerical results to be
presented in Sec. IV.
Returning to the case of the single-scattering approxi-

mation, as applying at high p ≫ QsðbÞ, it might be
tempting to interpret the negativity of v2 in that case as

b

r

r

S(b||r) < S(b   r)

FIG. 3. A qq̄-dipole with a transverse separation vector r and
impact parameter b from the center of collisions at two different
configurations: θ ¼ 0 (r ∥ b) and θ ¼ π=2 (r⊥ b).
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an opposite trend for the dipole scattering, namely,
Sðr ∥ bÞ > Sðr⊥ bÞ. However, we believe that such an
interpretation is truly misleading: in that case, the sign
of v2 follows from an analysis that was performed fully in
momentum space. Such an analysis gives one information
about the unintegrated gluon distribution in the target
[proportional to − ~N2gðb; pÞ, cf. Eq. (24)], but not about
the dipole scattering as a function of r. To compute the
latter, i.e., the function N2gðb; rÞ, one needs its Fourier
transform ~N2gðb; pÞ for all values of p, and not just for the
relatively hard values for which Eq. (24) applies. In fact,
even for small values of r, the angular dependence of

N2gðb; rÞ is controlled by relatively soft values of p within
the inverse Fourier transform ~N2gðb; pÞ → N2gðb; rÞ [cf. the
discussion following Eq. (27)].
Finally, let us generalize the previous results to the case

where the proton projectile itself has a Gaussian distribu-
tion in the transverse plane, xpqðxpÞ → xpqðxpÞfðbÞ, with
fðbÞ ¼ e−b

2=4R2

=ð4πR2Þ. Using this ansatz for fðbÞ
together with the expression (31) for the dipole amplitude,
one can easily perform the angular integrations in Eq. (10)
for v2 and thus obtain [the identity

R
2π
0 dαe−z cos α cosð2αÞ ¼

2πI2ðzÞ is also useful]

v2ðp;BÞ ¼
R
bdbe−ðb2þB2Þ=4R2

I2ðbB=2R2Þ R rdre−N 0ðb;rÞJ2ðprÞI1ðN θðb; rÞÞR
bdbe−ðb2þB2Þ=4R2

I0ðbB=2R2Þ R rdre−N 0ðb;rÞJ0ðprÞI0ðN θðb; rÞÞ
: ð42Þ

We recall that the “dummy” variable b is the impact parameter of a participating quark, whereas the external variable B
refers to the center of the projectile. The integral over b in the numerator of Eq. (42) is restricted by the support of the
function N θðb; rÞ, cf. Fig. 2; hence, it receives most of its contribution from relatively large values b ≳ R. For the nearly
central proton-proton collisions with B ≪ R, the overall elliptic flow is negligible, by rotational symmetry: the individual
contributions from various (peripheral) values of b can have any orientation, so they compensate each other. Indeed, using
I2ðxÞ≃ x2=8 for x ≪ 1, it is easy to see that v2ðp;BÞ vanishes as B2 when B → 0. But for larger impact parameters B≳ R,
the rotational symmetry of the interaction region is badly broken (recall Fig. 1) and one expects a nontrivial net result.
Geometrical considerations suggest that v2ðp; BÞ should be proportional to the eccentricity of the overlapping region, as
defined in Eqs. (11) or (13), which can be more explicitly written as

ε2ðp;BÞ ¼
R
dbb3e−ðb2þB2Þ=4R2

I2ðbB=2R2Þ R rdre−N 0ðb;rÞJ0ðprÞI0ðN θðb; rÞÞR
dbb3e−ðb2þB2Þ=4R2

I0ðbB=2R2Þ R rdre−N 0ðb;rÞJ0ðprÞI0ðN θðb; rÞÞ
; ð43Þ
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FIG. 4. Left: The dipole “survival probability” (more properly, the S-matrix S ¼ expf−N2gg) as a function of θ for a fixed b and two
values of r (corresponding to rather different scattering strengths). Right: The dipole amplitude N2gðb; r; θÞ as a function of b for a fixed
value of r and the two extreme possibilities for the orientation: θ ¼ 0 and θ ¼ π=2. The lower inset shows the ratio
N2gðθ ¼ 0Þ=N2gðθ ¼ π=2Þ. All curves are obtained by numerically evaluating N2g according to Eqs. (31), (33), and (32), together
with m ¼ 0.25 GeV, R2 ¼ 2 GeV−2 (i.e., R≃ 0.3 fm), and Q2

0s ¼ 0.165 GeV2.
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and, respectively,

ε2ðBÞ ¼
R
dbb3e−ðb2þB2Þ=4R2

I2ðbB=2R2ÞR
dbb3e−ðb2þB2Þ=4R2

I0ðbB=2R2Þ : ð44Þ

Indeed, one can understand this eccentricity as the expect-
ation value ε2 ¼ hcosð2αÞi, where we recall that α is the
angle made by the impact parameter b of an individual
quark with respect to that, B, of the center of the projectile
(see Fig. 1). Larger values for ε2 thus imply that all
participating quarks have similar impact parameters; hence,
the produced particles are preferentially produced along a
common direction—that of B—thus generating a sizable
value for the elliptic flow. Indeed, by inspection of the
equations above, it is clear that both v2ðp; BÞ and ε2ðp; BÞ
[or ε2ðBÞ] are proportional to B2 so long as B≲ R; hence,
they are proportional to each other. This relation between
the elliptic flow and the eccentricity will be further
investigated in Sec. IV, where all these quantities will be
numerically computed.

D. Dipole-nucleus scattering: The case of a lumpy target

The most straightforward generalization of the previous
setup to the case where the target is a large nucleus
with atomic number A ≫ 1would be obtained by assuming
that the valence color charges (and hence the associated
gluon distribution) are uniformly distributed throughout
the nuclear volume—the so-called “smooth nucleus.”
Experience with nuclear physics at lower energies suggests
that a reasonable approximation for the three-dimensional
distribution of the nuclear matter within a large nucleus is
provided by the Woods-Saxon distribution ρAðr⃗Þ. By
boosting this distribution and assuming that it also applies
to the valence color charges, we conclude that the case of a
“smooth nuclear target” can be obtained by replacing the
two-dimensional density μðbÞ in Eq. (15) as follows:

μðbÞ → μAðbÞ≡ μ0ATAðbÞ; ð45Þ

where TAðbÞ is the nuclear thickness function,

TAðbÞ≡
Z

dzρAð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
Þ; with

ρAðr⃗Þ≡ NA

expðr−RA
δ Þ þ 1

; ð46Þ

where RA ¼ ð1.12 fmÞA1=3 is the nuclear radius and δ ¼
0.54 fm is the width of the “nuclear edge” (the radial
distance across which the nuclear density is rapidly drop-
ping). The quantity μ0 has the same meaning as before—
the color charged squared for the valence quarks of the
nucleon per unit transverse area—and, hence, it is inde-
pendent of A. The overall factor of A visible in Eq. (45)
reflects the fact that the density ρA is normalized to unity,

R
d3r⃗ρAðr⃗Þ ¼ 1. This in turn implies that the normalization

factor NA scales like 1=A; hence, TA ∝ 1=A2=3 and the
color charge density therefore has the canonical scaling
with the number A of nucleons, μAðbÞ ∝ A1=3.
Under the above assumption, the formal calculation of

the dipole S-matrix would proceed in the same way as
before, leading to expressions similar to those already
presented in Eqs. (26), (31), (32), and (33). The ensuing
numerical evaluation, however, would likely lead to con-
siderably smaller values for v2, due to the combined effect
of the larger value for the nuclear radius RA and the fact that
the Woods-Saxon profile is less rapidly varying with b than
the Gaussian.
This being said, it is quite clear that a real nucleus is not

homogeneous; rather, it is a lumpy superposition of A
distinct nucleons and this lumpiness is known to have
important consequences for the phenomenology. In par-
ticular, it can generate a privileged direction of motion for
the produced particles (for a given impact parameter), via
the following mechanism: the effective dipole, with a given
orientation and size r, will scatter off the nucleon which
happens to be located at the dipole impact parameter B.
(From now on, we shall use B to denote the impact
parameter of the dipole with respect to the center of the
nucleus, and keep b for its impact parameter with respect to
the struck nucleon.) As a result, the produced quark will
preferentially move along the direction of the local impact
factor b ¼ B − bi, where bi is the position of the struck
nucleon with respect to the center of the nucleus. If
nucleons are randomly distributed around the given B,
then the information about the orientation of the produced
particle will be washed out after averaging over the nucleon
distribution. For large values of A, this will likely be the
case at impact parameters B deeply inside the nucleus,
where the nuclear distribution is quasihomogeneous. But
even in that case, this cannot happen for impact parameters
close to the periphery (B ∼ RA); this will therefore generate
nonzero contributions to v2. These qualitative considera-
tions will be confirmed via an explicit calculation, to which
we now turn.
For a given configuration of the A nucleons inside the

nucleus and assuming the dipole to independently scatter
off any of them, the dipole S-matrix should read (see [62]
for a more complete discussion)

SAðB; rÞ ¼ e−
P

A
i¼1

N2gðB−bi;rÞ: ð47Þ

For simplicity, we shall further assume that the various
nucleons are distributed independently from each other; for
each of them, its central position bi is distributed according
to the Woods-Saxon thickness function TAðbiÞ. The physi-
cal observable is then obtained by averaging over all
possible configurations of the nucleons as follows:
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SAðB; rÞ ¼
Z YA

i¼1

d2biTAðbiÞe−
P

A
i¼1

N2gðB−bi;rÞ

¼
�Z

d2bTAðjB − bjÞe−N2gðb;rÞ
�

A
: ð48Þ

The most interesting regime, including for the phenom-
enology of pA collisions at the LHC, is such that the
scattering between the dipole and a single nucleon is weak,
N2gðb; rÞ ≪ 1, yet the overall scattering can be strong
[meaning that the S-matrix can be small compared to unity,
SAðB; rÞ ≪ 1]. Under these assumptions, one can expand
the exponential e−N2g to lowest nontrivial order, perform the
integral over b and then reexponentiate the result, to finally
obtain [recall the normalization condition

R
d2bTAðbÞ ¼ 1]

SAðB; rÞ≃
�
1 −

Z
d2bTAðjB − bjÞN2gðb; rÞ

�
A

≃ e−AN
A
2gðB;rÞ; ð49Þ

with the following definition for the dipole-nucleus scatter-
ing amplitude in the two-gluon exchange approximation
(divided by the number A of nucleons):

NA
2gðB; rÞ ¼

Z
d2bN2gðb; rÞTAðjB − bjÞ: ð50Þ

The above integral over b is effectively restricted [by the
support of the dipole-proton amplitude N2gðb; rÞ] to the
area of the proton disk, which is small compared to that of
the nucleus. In other terms, one has b ≪ B for the most
interesting values B ∼ RA. In view of this, one may be
tempted to approximate TAðB − bÞ≃ TAðBÞ, as often done
in the literature [62]. However, this approximation would
wash out the information about the dipole orientation,
which is important for us here. To keep trace of this
information, one needs to go one step further in the small
b=B expansion, namely, up to quadratic order (the linear
term does not contribute to the integral over b, by parity).
We thus write

TAðjB−bjÞ ¼
�
1−bi

∂
∂Biþ

1

2
bibj

∂2

∂Bi∂Bjþ� � �
�
TAðjBjÞ;

≃TAðBÞ−
b ·B
B

T 0
AðBÞþ

bibj

2

×

�
BiBj

B2
T 00
AðBÞþ

1

B

�
δij−

BiBj

B2

�
T 0
AðBÞ

�
:

ð51Þ

Plugging the above expansion and the generic form of
N2gðb; r; θÞ given in Eq. (31) into Eq. (50), one can easily
perform the integral over the angle θ between b and r and
thus obtain (from now on, we use θ to denote the angle
made by the vectors r and B)

NA
2gðB; r; θÞ ¼ N A

0 ðB; rÞ þN A
θ ðB; rÞ cosð2θÞ; ð52Þ

where

N A
0 ðB; rÞ ¼ 2π

Z
dbbN 0ðb; rÞ

�
TAðBÞ

þ b2

4

�
T 00
AðBÞ þ

1

B
T 0
AðBÞ

��
;

N A
θ ðB; rÞ ¼

π

4

Z
dbb3N θðb; rÞ

�
T 00
AðBÞ −

1

B
T 0
AðBÞ

�
:

ð53Þ
The θ-dependent pieceN A

θ ðB; rÞ is proportional to the (first
and second) derivatives of the thickness function TAðBÞ;
hence, its support is limited to values of B near the edge of
the nucleus, within a distance ΔB ∼ δ around B ¼ RA (see
Fig. 5). This is in agreement with our previous physical
discussion and confirms that the mechanism under con-
sideration can generate a sizable v2 only in peripheral pA
collisions. As also illustrated in Fig. 5, the special combi-
nation T 00

AðBÞ − T 0
AðBÞ=B which enters N A

θ ðB; rÞ is pos-
itive for most values of B within its support. [It can become
slightly negative at intermediate values of B, but the
corresponding value v2ðp; BÞ is anyway very small, as
we shall see.] Together with the positivity of the respective
proton amplitude N θðb; rÞ, as numerically observed in
Sec. III C, this impliesN A

θ ðB; rÞ > 0. That is, as in the case
of a proton target, the scattering is stronger when the dipole
orientation r is (anti)parallel to its nuclear impact factor B,
rather than perpendicular to it.
At this stage, one could use the integral representations

for the functions N 0ðb; rÞ and N θðb; rÞ, as given,
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FIG. 5. The nuclear thickness TAðBÞ ðin fm−2Þ obtained from
Eq. (46) with A ¼ 208, together with its first two derivatives T 0

A
and T 00

A, and the special combination T 00
AðBÞ − T 0

AðBÞ=B which
enters the dipole-nucleus scattering amplitude in Eq. (53).
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respectively, in Eqs. (32) and (33), to numerically perform
the integrals in Eq. (53). This would amount to computing a
sequence of three radial integrations, with integrands
involving the oscillatory Bessel functions. This is indeed
possible in practice, but rather tedious and very time-
consuming. It turns out that this whole calculation can be
efficiently reorganized, in such a way as to provide fully
analytic results for the nuclear amplitudes N A

0 ðB; rÞ and
N A

θ ðB; rÞ. This is explained in Appendix B, from which we
show the final results [whose general structure is indeed
consistent with Eq. (53)],

N A
0 ðB; rÞ ¼ πR2Q2

0sr
2 ln

�
1

r2m2
þ e

�

×

�
TAðBÞ þ R2

�
T 00
AðBÞ þ

1

B
T 0
AðBÞ

��

þ π

3

R2

m2
Q2

0sr
2

�
T 00
AðBÞ þ

1

B
T 0
AðBÞ

�
; ð54Þ

N A
θ ðB; rÞ ¼

π

6

R2

m2
Q2

0sr
2

�
T 00
AðBÞ −

1

B
T 0
AðBÞ

�
: ð55Þ

The first line in the rhs of Eq. (54) for N A
0 , which is

proportional to the large logarithm lnð1=r2m2Þ, represents
the dominant contribution to the dipole amplitude. Its
present calculation within the MV model is indeed under
control (at least for sufficiently small dipole sizes
r ≪ 1=m), since this contribution is dominated by rela-
tively large exchanged momenta, m ≪ k ≪ 1=r. Within
that contribution, the dominant piece is the one propor-
tional to TAðBÞ. This argument shows that the nuclear
saturation momentum QsA [the inverse dipole size for
which the dipole amplitude ANA

2gðB; rÞ becomes of order
1] can be estimated as

Q2
sAðBÞ≃ AR2TAðBÞQ2

0s: ð56Þ

This scales like A1=3 and has the same impact-parameter
dependence as the nuclear thickness function TAðBÞ.
The θ-dependent pieceN A

θ of the amplitude, which is the
most interesting one for the present purposes, is propor-
tional to 1=m2, which demonstrates its nonperturbative
origin: it has been generated by integrating over soft
momenta k ∼m. In that sense, the above calculation is
merely heuristic and in particular strongly dependent upon
our recipe for implementing the infrared cutoff m. At this
point, one may wonder about the difference between the
small-m behaviors observed in pA and, respectively, pp
collisions: when m → 0, the θ-dependent piece of the
dipole amplitude remains finite for pp collisions,
cf. Eq. (39), whereas it is quadratically divergent in the
case of pA collisions, cf. Eq. (55). This difference can be
traced back to the integral over b which needs to be

performed when passing from pp to pA collisions,
cf. Eq. (53). When m → 0 and for large b≳ R, the
respective amplitude for pp collisions has a power tail
N θðb; rÞ ∝ 1=b2, as visible in Eq. (39). Therefore, the
integral

R
dbb3N θðb; rÞ which enters Eq. (55) for N A

θ ,
would be quadratically divergent in the absence of confine-
ment. After adding the latter in the form of a gluon massm,
this integral is cutoff at b ∼ 1=m, thus yielding
N A

θ ∝ 1=m2.
We are finally in a position to compute the elliptic flow

coefficient v2 for pA collisions: by inserting the dipole S-
matrix obtained according to Eqs. (49) and (52) into our
master formula (6), we obtain, similarly to Eq. (40),

v2ðp;BÞ ¼
R
rdre−AN

A
0
ðB;rÞJ2ðprÞI1ðAN A

θ ðB; rÞÞR
rdre−AN

A
0
ðB;rÞJ0ðprÞI0ðAN A

θ ðB; rÞÞ
: ð57Þ

This can be numerically computed using Eqs. (54) and
(55), with results to be discussed in the next section. The
generalization of Eq. (57) to an extended projectile is
straightforward and will also be considered in Sec. IV.

IV. NUMERICAL RESULTS FOR v2
AND PHYSICAL DISCUSSION

In this section we present the numerical results for v2 in
pp and pA collisions (with A ¼ 208) as emerging from our
model. For more clarity, in the following (and in all plots)
we shall denote the transverse momentum with pT . We
shall limit ourselves to the scenario which includes the
effects of multiple scattering, as discussed in Sec. III C for
pp collisions and in Sec. III D for pA collisions. For both
cases, pp and pA collisions, we shall exhibit v2 as a
function of the transverse momentum pT of the produced
quark, for various choices of the impact parameter, the
central saturation momentum in the proton Q0s, and the
infrared cutoff m. The only other parameter of our model,
i.e., the width R of the proton color charge distribution in
the transverse space, is fixed to the average value emerging
from a fit to t distribution of diffractive vector meson
production at HERA: that is, R2 ¼ 2 GeV−2. Strictly
speaking, such a fit is based on a different “saturation
model,” namely IP-Sat [64], but this difference is not
essential for the subsequent discussion, which will be
mostly qualitative. Note also that the value of R2 extracted
using the bCGC model in a fit to the same data [67] is
slightly larger.
Concerning Q0s—the proton saturation momentum at

b ¼ 0—we shall consider a rather wide range of values,
from Q2

0s ¼ 0.2–0.4 GeV2 up to Q2
0s ¼ 2.4 GeV2. The

lowest values emerge from phenomenological analyses
based on the Balitsky-Kovchegov (BK) equation with
running coupling to either the HERA data [75–77], or to
the pp data at RHIC and the LHC [78–80]. The highest
value could, in principle, be reached in high-multiplicity
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events characterized by large fluctuations [28,81]. (Notice
that the fits to HERA data in [76,77] use a more complete
version of the BK equation which, in addition to a running
coupling, also includes collinear improvement [76,82,83].)
We are now prepared to present our numerical results,

starting with pp collisions. As stressed in the Introduction,
we have in mind an asymmetric situation, where one of the
protons (“the target”) looks dense and can be described by
the MV model, while the other one (“the projectile”) is
dilute. This might be the case for particle production at very
forward rapidities and also for rare, high-multiplicity,
events in which the target proton develops “hot spots”
via fluctuations in the high-energy evolution [28,81]. We
first show our results for the idealized case of a pointlike
projectile, cf. Eq. (40), and then for the more realistic case

of a projectile which has a nontrivial extent in the transverse
plane, cf. Eq. (42).
In Fig. 6 we show the azimuthal asymmetry v2 computed

according to Eqs. (32), (33), and (40) for different choices
of the central saturation scale Q0s. These plots illustrate the
scaling of the peak position pmax withQ0s: when we plot v2
as a function of pT=Q0s, the peak position pmax=Q0s is
quasi-independent of Q0s and rather close to 1=2. This
scaling property indicates the importance of the saturation
physics. A larger saturation scale shifts the unintegrated
gluon distribution (the integrand of v2) to higher transverse
momenta. In Fig. 7 we show the dependence of the
azimuthal asymmetry v2 upon the impact parameter b (left
panel) and upon the infrared cutoff m (right panel). As
expected, the strength of v2 is increasing with b.
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FIG. 7. The azimuthal asymmetry v2 in pp collisions with a pointlike projectile proton. Left: Three different impact parameters,
b ¼ 0.1; 0.2, and 0.3 fm, for a fixed massm ¼ 0.3 GeV. Right: The dependence upon the infrared cutoff (the massm), for a fixed impact
parameter b ¼ 0.2 fm. All these results are obtained by using Q2

0s ¼ 0.8 GeV2 and R2 ¼ 2 GeV−2.
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scale, Q2
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Remarkably, though, one see that quite large peak values
v2ðpmax; bÞ≳ 0.15 are obtained already for not-so-large
impact parameters, b≲ 0.3 fm, that is, for collisions which
are peripheral, but not ultraperipheral. (Recall that the
typical transverse size of the color charge distribution in the
target is 2R ∼ 0.6 fm.) It is also interesting to notice that,
though the height of the peak is rapidly increasing with b,
its position pmax changes only slightly when going from
rather central (b ¼ 0.1 fm) to more peripheral (b ¼ 0.3 fm)
values. This observation should be correlated with the fact
that, as manifest on Eq. (39), the piece N θðb; rÞ of the
amplitude which is responsible for the angular dependence
is proportional to the central value Q0s of the saturation

scale, and not to its local value at the actual impact
parameter. As anticipated, the m dependence is quite
strong: a slight increase in m, from 0.3 to 0.4 GeV, reduces
the peak value of v2 by a factor of 3.
Turning now to an extended projectile with a Gaussian

distribution in impact parameter space, the corresponding
v2 is shown in Fig. 8, for various values for Q2

0s and B. (We
have checked that them-dependence of the results is similar
to that observed for a pointlike projectile, cf. Fig. 7.) One
may expect the strength of the azimuthal asymmetry to be
reduced, perhaps even significantly, after averaging over
the surface of the projectile, but this is actually not the case:
as is visible in Fig. 8, the peak value of v2 remains as large
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FIG. 8. The azimuthal asymmetry v2 in pp collisions with an extended projectile, whose center has an impact parameter B. Left: Three
different values for the central saturation scale in the target,Q2

0s ¼ 0.8, 1.6, and 2.4 GeV2, for a fixed B ¼ 0.6 fm; the results are directly
plotted in terms of the “scaling variable” p=Q0s. Right: Four different impact parameters, B ¼ 0.2; 0.4; 0.6, and 0.8 fm, for a fixed
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0 0.2 0.4 0.6 0.8 1
B [fm]

0

0.2

0.4

0.6

0.8

1

ε 2

pT = 1 GeV

pT = 0.5 GeV

pT = 0.1 GeV

ε2(Β)

p-p collisions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
B [fm]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

v 2

pT = 1 GeV

pT = 0.5 GeV

pT = 0.1 GeV

p-p collisions

FIG. 9. The eccentricity ε2ðpT; BÞ (left panel) and the azimuthal asymmetry v2ðpT; BÞ (right panel) in pp collisions plotted as
functions of the impact parameter B of the projectile proton, for three values of the transverse momentum of the produced quark,
pT ¼ 0.1, 0.5, and 1 GeV. In the left plot, we also show the eccentricity integrated over pT, that is, the quantity ε2ðBÞ given by Eq. (44).
All these results are obtained by using Q2

0s ¼ 0.8 GeV2, m ¼ 0.3 GeV, and R2 ¼ 2 GeV−2.

EDMOND IANCU and AMIR H. REZAEIAN PHYSICAL REVIEW D 95, 094003 (2017)

094003-18



as for a pointlike projectile. To see such a sizable v2,
however, one needs to go to larger values for the impact
parameter B, which now refers to the center of the projectile
(recall Fig. 1). This is in agreement with the discussion at
the end of Sec. III C, which also suggests that the value of
v2 should be correlated to the eccentricity ε2 of the
interaction region.
To check this conjecture, we have numerically computed

ε2ðpT; BÞ and ε2ðBÞ according to Eqs. (43)–(44), with the
results shown in Fig. 9 (left panel). These results should be
compared to the B dependence of v2, as exhibited in the
right panel of the same figure. These plots confirm that v2
and ε2 show a similar trend with B: they monotonically
increase with B—actually, they are both proportional to
B2 so long as B is small enough, B≲ R. On the other
hand, they show rather different behaviors with pT . The
plots for v2ðpT; BÞ in the right panel of Fig. 9 are in
agreement with those in the left panel of Fig. 8: v2 vanishes
as pT → 0 and has a pronounced peak at p ¼ pmax with
0.5 < pmax < 1 GeV. On the other hand, ε2 has a rather
weak dependence upon pT : the curves corresponding to
different values for the momentum are rather close to each
other, and also to the curve representing the integrated
eccentricity ε2ðBÞ. This reflects the fact that the quantity
ε2ðpT; BÞ is only weakly sensitive to the dipole scattering,
since it is mostly controlled by the geometry.
We now turn to the case of pA collisions, for which the

present formalism is somewhat better justified. The respec-
tive v2 is computed by numerically integrating Eq. (57)
with the dipole amplitude given by the analytic results in
Eqs. (54) and (55). The two plots in Fig. 10, which exhibit
v2 as a function of pT (left panel) and pT=Q0s (right panel),
for different values of the proton saturation scale Q0s, are
quite similar to the corresponding plots for pp collisions,

cf. Fig. 6. In particular, the peak position appears to respect
the expected scaling with the nuclear saturation momentum
QsA ¼ A1=6Q0s: indeed, the maximum occurs at, roughly,
pmax=Q0s ≃ 1.2, which is larger by a factor A1=6 ≃ 2.4 (for
A ¼ 208) than the respective value observed for pp
collisions. However, in order to reach values for v2
comparable to those in pp collisions, one now needs to
go up to much larger values of the impact parameter
B≳ RA, where the inhomogeneity in the nuclear distribu-
tion is located (cf. the discussion in Sec. III D). The B
dependence of the function v2ðpÞ is illustrated in the left
panel of Fig. 11. This is controlled by the combination
T 00
AðBÞ − T 0

AðBÞ=B, cf. Eq. (53), and the results in Fig. 11
are indeed in agreement with the previous discussion of
Fig. 5. Namely, v2 is seen to be sizable and positive for all
values B ≥ RA ≈ 6.5 fm.
Notice that in the present approximations, the dipole

amplitude (hence our estimate for v2) for the case of a
nuclear target depends upon the two scales R2 and Q2

0s
mostly via their product R2Q2

0s. [This becomes obvious by
inspection of Eqs. (54) and (55).] Accordingly, the effect of
increasing Q2

0s at fixed R2, as is visible in Fig. 10, can
alternatively be associated with increasing R2 for a fixed
value Q2

0s. In the right panel of Fig. 11, we show the
dependence of v2 in pA collisions upon the infrared
cutoff m. Similarly to the case of pp collisions, one finds
that this dependence is rather strong: by decreasing m from
the “confinement” value m ¼ 0.3 GeV to the pion mass
m ¼ 0.14 GeV, one increases the peak value of v2 by a
factor of 3.
In Fig. 12 we illustrate the effect of using an extended

proton projectile, with Gaussian distribution in impact
parameter. The corresponding formula for v2ðpT; BÞ is
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FIG. 10. The azimuthal asymmetry v2 in pþ Pb collisions for a point-like projectile proton. Left: Three different values for the central
saturation momentum in the proton, Q2
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the straightforward generalization of Eq. (42), obtained by
replacingN 0ðb;rÞ→AN A

0 ðb;rÞ andN θðb;rÞ→AN A
θ ðb;rÞ.

As visible in Fig. 12, the effect is quite small—at most a
change of 20% in the value of v2 at its peak.
The systematics of the above results for v2 can be

physically understood as follows. First of all, we found that
v2ðpTÞ is small for both very small and very large values of
pT , but has a maximum at some intermediate value pmax. In
particular, v2 ¼ 0 for pT ¼ 0, as already obvious by
inspection of Eq. (6). These features are easy to understand:
the angular orientation cannot play any role when either the
momentum pT or the dipole size r is too small. Since
typically r ∼ 1=pT, the second argument explains the rapid
decrease of v2 that we observe at high pT . But the detailed

shape of the function v2ðpTÞ—in particular the position,
the width, and the height of its maximum—are strongly
dependent upon the impact parameter and also upon the
values of the three parameters Q0s, m, and R.
Specifically, as is visible in the left panels in both Fig. 7

and Fig. 11, v2 is negligible for relatively small impact
parameters (in particular, it vanishes as b; B → 0), but it
becomes large—in the sense that it reaches a peak value
v2ðpmaxÞ≳ 0.1—when the impact parameter is comparable
to the typical size for inhomogeneity in the target, that is,
b ∼ R≳ 0.2 fm for a proton and, respectively, B ∼ RA ≳
6.5 fm for a large nucleus. This is understandable, given
that the angular orientation would play no role for a target
which is homogeneous in impact-parameter space. We

0 1 2 3 4 5
pT [GeV]

0

0.03

0.06

0.09

0.12

0.15

0.18

v 2

B= 7 fm, with GPD

B= 6.5 fm, with GPD

B = 7 fm, without GPD

B = 6.5 fm, without GPD

p-Pb collisions

Q0s
2
 = 0.8 GeV

2

0 1 2 3 4 5
pT [GeV]

0

0.03

0.06

0.09

0.12

0.15

0.18

v 2

Q0s
2
 = 0.8 GeV

2
, with GPD

Q0s
2
 = 2.4 GeV

2
, with GPD

Q0s
2
 = 0.8 GeV

2
, without GPD

Q0s
2
 = 2.4 GeV

2
, without GPD

p-Pb collisions

B = 7 fm
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recall that, for the mechanism under consideration, the
elliptic flow is driven by the sensitivity of the color-dipole
orientation to the variation in the gluonic or nuclear
distribution in the transverse plane.
We furthermore found that the peak in v2ðpTÞ moves

towards larger values of pT and becomes broader when
increasing Q2

0s, see Fig. 6 and Fig. 10. This is as expected:
the larger saturation momentum in the target, the larger is
the typical momentum of the produced parton and the wider
is its distribution in pT . Interestingly, for both pp and pA
collisions we found that the position pmax of the peak in
v2ðpTÞ is proportional to Q0s. A similar observation was
recently made in Ref. [60]. When v2ðpTÞ is plotted as a
function of pT=Q0s, the peak position pmax=Q0s is quasi-
independent of Q0s, though its height and shape are still
strongly dependent (see the right panels in Fig. 6 and
Fig. 10). Specifically, the maximal value at the peak
v2ðpmaxÞ appears to increase when decreasing Q0s, i.e.,
when the target becomes more dilute. This may seem
counterintuitive since, as already stressed, the multiple
scattering represents an essential ingredient of the
mechanism under consideration (it even changes the sign
of v2 as compared to the single-scattering approximation).
However, the importance of the dipole orientation depends
in a crucial way upon the balance between the dipole
size and the size of its impact parameter. The dipole size is
fixed by the transverse momentum of the produced quark,
r ∼ 1=pT , which in turn is determined by the target
saturation momentum: pT ∼QsðbÞ ∝ Q0s. Hence, if one
keeps increasing Q0s, the dipole size eventually becomes
much smaller than b and the dipole orientation no longer
plays a role. A similar effect is seen when the saturation
momentum increases as a consequence of the high-energy
evolution [40,44,45].
Finally, given the importance of soft, nonperturbative,

exchanges for the angular dependence of the dipole
amplitude, it should be no surprise that our results for
v2 are rather strongly dependent to the “confinement” scale
m: the anisotropy is enhanced when decreasingm, since the
phase space for soft exchanges is rapidly increasing, see the
right panels in Fig. 7 and Fig. 11. For the angular-
dependent piece of the dipole amplitude and for a proton
target, this dependence has been already exhibited in Fig. 2;
for a nuclear target, it is directly visible by inspection of
Eq. (55) for N A

θ .
From the previous considerations in this paper, it should

be clear that our current analytic description for the
mechanism under consideration is too crude to allow for
quantitative predictions, or realistic applications to the
phenomenology. This being said, we would like to show
via an example that this scenario is not excluded by the
current data. Namely, we will show that, by appropriately
choosing the values of the impact parameter B and of the
free parameters of the models, one can give a reasonable
description of the pT dependence of the elliptic flow

v2ðpTÞ extracted from multiparticle azimuthal correlations
in pþ Pb collisions at the LHC, in a given multiplicity
class. This should not be confounded with a genuine fit to
the data—it is merely an exploratory comparison. Given the
uncertainties inherent in our model, we shall adopt a rather
crude strategy for relying the predictions of this model to
the phenomenology.
First, we have not attempted to compute the conse-

quences of our mechanism for multiparticle azimuthal
correlations; rather, we shall make the simplifying
assumption that the final particles are correlated with each
other only through the flow correlations with the reaction
plane (that is, we neglect possible “nonflow correlations”).
Under this assumption, we can write c2f2g≃ v22, and
similarly c2f4g≃ −v42, where c2f2g and c2f4g are,
respectively, the second-order two-particle and four-
particle cumulants, as defined, e.g., in [49,84], and v2 is
the usual elliptic flow coefficient, as discussed throughout
this paper. More precisely, our present estimates for v2 refer
to a fixed impact parameter B; that is, we have a prediction
for the function v2ðpT; BÞ, whereas the data for pþ Pb (and
also pþ p) collisions are rather classified according to the
particle multiplicity (the number of reconstructed tracks) in
the final state. Because of the large multiplicity fluctua-
tions, the correlation between the multiplicity classes and
the cuts in impact parameter is rather loose and not well
under control (see, e.g., the discussion in [85]). To cope
with that and by lack of any better alternative, we shall
simply select a value of B for which the predictions of our
model appear to reasonably agree with the data in a given
high-multiplicity class. We shall similarly proceed with the
free parameters of our model, which in the case of pA
collisions are the dimensionless product R2Q2

0s and the
infrared cutoff m. It is understood that the values for B, m,
and R2Q2

0s that will emerge from this procedure must also
reflect the influence of other uncertainties or simplifications
inherent in our present approach, like the omission of
gluons. (Gluon production within the present setup should
give rise to a similar pT dependence in v2, but only modify
its overall magnitude.)
Finally, to have a better comparison with the pT depend-

ence of the data, which refer to hadrons, one must take into
the account the effect of the quark (or gluon) fragmentation
into hadrons. This too will be implemented in a rather
heuristic way, by assuming that phadron ¼ hzipquark, where
hzi is the average value of the splitting fraction and will be
treated as a free parameter.
In Fig. 13, we compare our results for v2 in peripheral

pA collisions (with A ¼ 208) with the experimental data
from the CMS experiment for the second-order elliptic
harmonic v2f4g in p-Pb collisions, as extracted from a
four-particle cumulant analysis in events where the number
of reconstructed tracks lies in the range 120 < Noff

trk < 150

[3]. The two theoretical curves are obtained by using an
extended projectile (so the impact parameter B refers to the
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center of this projectile, as in Fig. 12), together with the
following values for the free parameters: B ¼ 7 fm,
R2 ¼ 2 GeV−2, Q2

0s ¼ 3 GeV2, m ¼ 0.1 GeV, and two
values for hzi of 0.6 and, respectively, 0.7. Notice that
this value, Q2

0s ¼ 3 GeV2, is in the ballpark of the
theoretical expectations for the proton saturation momen-
tum at the LHC energies. It is quite remarkable that, in spite
of the many simplifications and the crude assumptions, our
mechanism appears to be able to produce the correct pT
dependence of v2 and also its correct size, with reasonable
values for the free parameters.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have analyzed a less-explored, albeit
not totally new, mechanism for generating azimuthal
asymmetries in particle production in dilute-dense colli-
sions: the dependence of the cross section for single-
inclusive particle production upon the azimuthal orientation
of the momentum of the produced particle with respect to
its impact parameter. As compared to previous related
studies in the literature [32,56–60], we have considered a
different model for the gluon distribution in the dense
target—an extension of the MV model—which combines
the proper pQCD tail at high transverse momenta with a
Gaussian profile (inspired by fits to the HERA data) for the
distribution of the color charges in the impact-parameter space
and a gluonmasswhichmimics confinement. A realistic, or at
least physically motivated, treatment of the nonperturbative

aspects related to the transverse inhomogeneity and to
confinement is indeed essential, since, as demonstrated by
our analysis, these aspects do actually control the azimuthal
asymmetries produced by this mechanism.
Within this setup, we have given a systematic semianalytic

study of the angular dependence of the dipole scattering
amplitude and we have used the result to compute the elliptic
flow coefficient v2 separately for proton-proton and proton-
nucleus collisions (the main difference being the inclusion of
lumpiness effects in the case of a nuclear target). We thus
found that, as a function of the impact parameter, v2 is rather
strongly peaked near the edge of the target, where the
transverse inhomogeneity is more pronounced. Hence, the
present mechanism will significantly contribute to azimuthal
asymmetries only via peripheral collisions. Furthermore, as a
function of the transverse momentum of the produced
particle, v2 shows a maximum at some intermediate semi-
hard value which is proportional to the target saturation
momentum at b ¼ 0. This maximum broadens and lowers
with increasing the saturation momentum. The overall pT
dependence is quite similar to that observed in the phenom-
enology of pþ Pb collisions at the LHC. In fact, a semi-
quantitative agreement with the data can be obtained with
reasonable choices for the model parameters; this agreement,
however, should be taken with a grain of salt, because our
model is quite crude and additional approximations are
performed when comparing with the data.
To convincingly demonstrate this mechanism, further

studies are necessary. First, one would like to understand
its evolution with increasing energy. To that aim, one should
solve the BK equation [86,87] with initial conditions at low
energy provided by our present model. In the respective
solutions, one must keep trace of the impact-parameter
dependence (including the angular dependence) of the dipole
amplitude and one must enforce confinement within the soft
gluon emission kernel, preferably by using the same infrared
regulator (gluon mass) m as in the initial condition. Similar
solutions have been already considered in [69,70,88].
Furthermore, since the orientation of the reaction plane

cannot be experimentally measured, one must compute the
imprint of the azimuthal asymmetries generated by the
present mechanism on multiparticle correlations. For in-
stance, one can study the simultaneous production of two
quarks in pA collisions. The calculation can be simplified by
assuming that the two quarks (originally collinear with the
projectile) scatter independently of each other and by taking
themulticolor limitNc → ∞. (We recall that themultiparticle
correlations generated by the present mechanism survive in
the large-Nc limit.) As anticipated in the Introduction, we
expect the multiparticle correlations to be important only for
sufficiently peripheral collisions and to lead to flow—a
collective motion of particles which are produced independ-
ently from each other, but which are all correlated with the
reaction plane defined by their average impact parameter.
Note that even for independent partons in the projectile at
large Nc, the double-patron-scattering Hanbury, Brown, and
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FIG. 13. The azimuthal asymmetry v2 in pþ Pb collisions
at a fixed impact parameter B ¼ 7 fm and two different values for
the average splitting fraction hzi. The theoretical results refer
to an extended projectile proton, with a Gaussian distribution in
impact parameter (GPD). All results are obtained at a fixed
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second-order elliptic harmonic v2f4g extracted from the four-
particle cumulant via v2f4g ¼ ½−c2f4g�1=4.

EDMOND IANCU and AMIR H. REZAEIAN PHYSICAL REVIEW D 95, 094003 (2017)

094003-22



Twiss correlations may lead to anisotropy [89]. This effect is
not accounted for in the present mechanism.
Given the prominence of the peripheral physics for the

physical problem at hand, we furthermore expect that the
fluctuations in the shape of the colliding hadrons should
play an important role: they should amplify the inhomo-
geneity in impact-parameter space and thus enhance the
azimuthal asymmetries. The importance of such fluctua-
tions is supported by a recent analysis of the HERA data
for incoherent exclusive diffractive vector meson produc-
tion in deep inelastic scattering [90]. It would therefore be
interesting to redo our present analysis of the angular
dependence of the dipole scattering for the case where the
(projectile and/or target) proton has strong shape fluctua-
tions, e.g., as described by the models used in [90] and
which are constrained by the HERA data.
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APPENDIX A: COMPUTING THE DIPOLE
AMPLITUDE IN THE TWO-GLUON EXCHANGE

APPROXIMATION

In this Appendix, we present details on the calculation
leading to Eqs. (32) and (33) for the dipole scattering
amplitude in the two-gluon exchange approximation. The
starting point is Eq. (29) for N2gðb; rÞ, which, we recall, has
been obtained from the general MV-model formula (20) by
expanding to second order in k · r.
Specifically, let β and θk denote the angles between Δ

and k and, respectively, between b and k. Then we can
rewrite Eq. (29) as

N2gðb; r; θÞ ¼
g2CF

2
r2
Z Z

ΔdΔ
ð2πÞ2

kdk
ð2πÞ2 ~μðΔÞ

Z Z
dβdθk

½k2cos2ðθ − θkÞ − ðΔ2=4Þcos2ðβ þ θ − θkÞ�eiΔb cosðθk−βÞ
½k2 þ Δ2=4þ kΔ cosðβÞ þm2�½k2 þ Δ2=4 − kΔ cosðβÞ þm2� :

ðA1Þ
We first perform the integral over the angle θk using the identity in Eq. (5), to obtainZ

2π

0

dθkeiΔb cosðθk−βÞcos2ðθ − θkÞ ¼ π½J0ðΔbÞ − cosð2ðθ − βÞÞJ2ðΔbÞ�;Z
2π

0

dθkeiΔb cosðθk−βÞcos2ðβ þ θ − θkÞ ¼ π½J0ðΔbÞ − cosð2θÞJ2ðΔbÞ�: ðA2Þ

The ensuing integrals over β can be now performed by using the following identities:Z
2π

0

dβ
1

A2 − B2cos2ðβÞ ¼
2π

AðA2 − B2Þ1=2 ;Z
2π

0

dβ
cosð2βÞ

A2 − B2cos2ðβÞ ¼ −
2π

AðA2 − B2Þ1=2 −
4π

B2
þ 4πA

B2ðA2 − B2Þ1=2 ; ðA3Þ

with A ¼ k2 þ Δ2=4þm2 and B ¼ kΔ. We thus confirm the general structure in Eq. (31) and at the same time obtain more
explicit expressions for the two functions N 0ðb; rÞ and N θðb; rÞ as double radial integrals to be numerically computed.
Specifically, we find

N 0ðb; rÞ ¼
g2CF

4ð2πÞ2 r
2

Z
∞

0

dΔ
Z

∞

0

dk
~μðΔÞJ0ðΔbÞkΔðk2 − Δ2=4Þ

ðk2 þ Δ2=4þm2Þððk2 þ Δ2=4þm2Þ2 − k2Δ2Þ1=2 ; ðA4Þ

together with Eq. (33) for N θðb; rÞ. It is easy to check
that the double integral yielding N θðb; rÞ is well
defined as it stands, so its numerical evaluation poses
no special problem. On the other hand, the integral
over k giving N 0ðb; rÞ has a logarithmic ultraviolet

divergence and needs to be cut off at k ∼ 1=r, as
already explained. The precise implementation of this
UV cutoff introduces some ambiguity, that we shall fix
by replacing Eq. (A4) with Eq. (32), as discussed in the
main text.
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As also explained in Sec. III B, the limit m → 0 of N2g is
well defined, because of the explicit transverse inhomo-
geneity in the target. We have already studied this limit for
the piece N θðb; rÞ which controls the angular dependence,
cf. Eq. (39). In what follows we shall perform the
corresponding study for the other piece N 0. To that aim,
it is more convenient to use Eq. (A4), in which we set
m ¼ 0 and simply cut the integral over k in the ultraviolet at
k ∼ 1=r. Using Eq. (37), we find

N 0ðb; rÞjm¼0 ¼
g2CF

4ð2πÞ2 r
2

Z
∞

0

dΔΔ ~μðΔÞJ0ðΔbÞ
Z

1=r

0

dk

×
k

k2 þ Δ2=4
½Θðk − Δ=2Þ − ΘðΔ=2 − kÞ�;

¼ g2CF

8ð2πÞ2 r
2

Z
∞

0

dΔΔ ~μðΔÞJ0ðΔbÞ ln
1

r2Δ2
:

ðA5Þ

This is strictly true for 1=r ≫ Δ, meaning r ≪ R (recall
that the integral over Δ is restricted to Δ≲ 1=R by the
transverse inhomogeneity in the target). At this point, it is
convenient to separate the logarithm as lnð1=r2Δ2Þ ¼
lnðR2=r2Þ þ lnð1=R2Δ2Þ, where the first piece in the rhs
is the “large logarithm” (since typically r ≪ R), whereas
the argument of the second logarithm is of order 1. One
then easily finds

N 0ðb; rÞjm¼0 ¼
Q2

sðbÞr2
4

ln
R2

r2
þ g2CF

8ð2πÞ2 r
2

×
Z

∞

0

dΔΔ ~μðΔÞJ0ðΔbÞ ln
1

R2Δ2
;

≃Q2
sðbÞr2
4

ln
R2

r2
þQ2

0sr
2
R2

b2
; ðA6Þ

where in the second line we kept only the power-law tail at
large b, as developed by the integral over Δ from the first
line. [This power-law tail can be easily obtained by letting
~μðΔÞ → ~μð0Þ inside the integrand, as appropriate for large
b ≫ R.] Notice that for very large impact parameters
b ≫ R, the first term proportional to the local saturation
momentum Q2

sðbÞ is exponentially suppressed and the
scattering amplitude (which is small anyway) is controlled
by the power-law tail. However, this is not the situation that

we have considered throughout this work; indeed, we have
looked at impact parameters b ≲ R, where the scattering
amplitude is dominated by the first term ∝ Q2

sðbÞ.

APPENDIX B: MORE DETAILS ON THE CASE
OF A LUMPY NUCLEAR TARGET

In this Appendix, we shall present more details on the
derivation of Eqs. (54) and (55) for the dipole scattering off
a lumpy nucleus in the two-gluon exchange approximation.
Namely, we would like to compute the integral over b in
Eq. (50) with the nuclear thickness function given by the
second-order expansion in Eq. (51). To that aim, it is useful
to introduce the following Fourier transform:

~N2gðΔ; rÞ ¼
Z

d2be−ib·ΔN2gðb; rÞ: ðB1Þ

To the order of interest, N2gðb; rÞ is given by Eq. (29),
which immediately implies

~N2gðΔ; rÞ≃ g2CF

2
rlrm

Z
d2k
ð2πÞ2

×
ðklkm − ΔlΔm=4Þ~μðΔÞ

½ðkþ Δ=2Þ2 þm2�½ðk − Δ=2Þ2 þm2� :

ðB2Þ

The interesting integrals over b can be related to the
behavior of ~N2gðΔ; rÞ near Δ ¼ 0. We first have

Z
d2bN2gðb; rÞ ¼ ~N2gð0; rÞ

¼ g2CFr2

4

Z
d2k
ð2πÞ2

k2 ~μð0Þ
ðk2 þm2Þ2

¼ πR2Q2
0sr

2 ln

�
1

r2m2
þ e

�
: ðB3Þ

We have also used here klkm → ðk2=2Þδlm together
with the renormalization prescription in Eq. (34) and
~μð0Þ ¼ 4πR2μ0. Not surprisingly, the integral over b has
generated a result proportional to the proton area ∼R2.
For the terms quadratic in b, one similarly finds

Z
d2bN2gðb; rÞbibj ¼ −

∂2

∂Δi∂Δj
~N2gðΔ; rÞjΔ¼0

¼ g2CF

2

Z
d2k
ð2πÞ2

~μð0Þ
ðk2 þm2Þ2

�
rirj

2
þ 2δijR2ðk · rÞ2 þ ðk · rÞ2

k2 þm2

�
δij −

2kikj

k2 þm2

��
;

¼ πR2Q2
0s

m2

�
1

3
ð2rirj þ δijr2Þ þ 2δijr2ðmRÞ2 ln

�
1

r2m2
þ e

��
; ðB4Þ
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where in going from the second to the third line we have
used the fact that, under the integral over k, one can replace

kikjklkm →
k4

8
ðδijδlm þ δilδjm þ δimδjlÞ: ðB5Þ

By combining the above equations (B3) and (B4) with the
expansion in Eq. (51), one immediately finds the results
exhibited in Eqs. (54) and (55).

[1] V. Khachatryan et al. (CMS Collaboration), J. High Energy
Phys. 09 (2010) 091.

[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
718, 795 (2013).

[3] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
724, 213 (2013).

[4] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719,
29 (2013).

[5] B. B. Abelev et al. (ALICE Collaboration), Phys. Lett. B
726, 164 (2013).

[6] B. B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 90,
054901 (2014).

[7] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 110,
182302 (2013).

[8] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 725, 60
(2013).

[9] G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 90,
044906 (2014).

[10] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett.
111, 212301 (2013).

[11] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett.
114, 192301 (2015).

[12] L. Adamczyk et al. (STAR Collaboration), Phys. Lett. B
743, 333 (2015).

[13] L. Adamczyk et al. (STAR Collaboration), Phys. Lett. B
747, 265 (2015).

[14] D. d’Enterria, G. K. Eyyubova, V. L. Korotkikh, I. P.
Lokhtin, S. V. Petrushanko, L. I. Sarycheva, and A.M.
Snigirev, Eur. Phys. J. C 66, 173 (2010).

[15] P. Bozek, Eur. Phys. J. C 71, 1 (2011).
[16] P. Bozek and W. Broniowski, Phys. Lett. B 718, 1557

(2013).
[17] P. Bozek and W. Broniowski, Phys. Rev. C 88, 014903

(2013).
[18] P. Bozek, W. Broniowski, and G. Torrieri, Phys. Rev. Lett.

111, 172303 (2013).
[19] G.-Y. Qin and B. Müller, Phys. Rev. C 89, 044902 (2014).
[20] K. Werner, M. Bleicher, B. Guiot, I. Karpenko, and T.

Pierog, Phys. Rev. Lett. 112, 232301 (2014).
[21] A. Bzdak and G.-L. Ma, Phys. Rev. Lett. 113, 252301

(2014).
[22] R. D. Weller and P. Romatschke, arXiv:1701.07145.
[23] Y. V. Kovchegov, E. Levin, and L. D. McLerran, Phys. Rev.

C 63, 024903 (2001).
[24] D. Teaney and R. Venugopalan, Phys. Lett. B 539, 53

(2002).
[25] Y. V. Kovchegov and K. L. Tuchin, Nucl. Phys. A708, 413

(2002).

[26] A. Dumitru, F. Gelis, L. McLerran, and R. Venugopalan,
Nucl. Phys. A810, 91 (2008).

[27] S. Gavin, L. McLerran, and G. Moschelli, Phys. Rev. C 79,
051902 (2009).

[28] E. Avsar, C. Flensburg, Y. Hatta, J.-Y. Ollitrault, and T.
Ueda, Phys. Lett. B 702, 394 (2011).

[29] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T.
Lappi, and R. Venugopalan, Phys. Lett. B 697, 21 (2011).

[30] A. Kovner and M. Lublinsky, Phys. Rev. D 83, 034017
(2011).

[31] A. Kovner and M. Lublinsky, Phys. Rev. D 84, 094011
(2011).

[32] E. Levin and A. H. Rezaeian, Phys. Rev. D 84, 034031
(2011).

[33] E. Iancu and D. Triantafyllopoulos, J. High Energy Phys. 11
(2011) 105.

[34] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev.
Lett. 108, 252301 (2012).

[35] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. C
86, 034908 (2012).

[36] K. Dusling and R. Venugopalan, Phys. Rev. Lett. 108,
262001 (2012).

[37] K. Dusling and R. Venugopalan, Phys. Rev. D 87, 094034
(2013).

[38] K. Dusling, P. Tribedy, and R. Venugopalan, Phys. Rev. D
93, 014034 (2016).

[39] Y. V. Kovchegov and D. E. Wertepny, Nucl. Phys. A925,
254 (2014).

[40] A. Kovner and M. Lublinsky, Int. J. Mod. Phys. E 22,
1330001 (2013).

[41] A. Kovner and A. H. Rezaeian, Phys. Rev. D 90, 014031
(2014).

[42] A. Kovner and A. H. Rezaeian, Phys. Rev. D 92, 074045
(2015).

[43] B. Schenke, S. Schlichting, and R. Venugopalan, Phys. Lett.
B 747, 76 (2015).

[44] T. Lappi, Phys. Lett. B 744, 315 (2015).
[45] T. Lappi, B. Schenke, S. Schlichting, and R. Venugopalan, J.

High Energy Phys. 01 (2016) 061.
[46] A. H. Rezaeian, Phys. Rev. D 93, 094030 (2016).
[47] B. Schenke and S. Schlichting, Phys. Rev. C 94, 044907

(2016).
[48] B. Schenke, S. Schlichting, P. Tribedy, and R. Venugopalan,

Phys. Rev. Lett. 117, 162301 (2016).
[49] R. Snellings, New J. Phys. 13, 055008 (2011).
[50] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010);

82, 039903(E) (2010).
[51] E. Iancu and R. Venugopalan, arXiv:hep-ph/0303204.

ELLIPTIC FLOW FROM COLOR-DIPOLE ORIENTATION … PHYSICAL REVIEW D 95, 094003 (2017)

094003-25

https://doi.org/10.1007/JHEP09(2010)091
https://doi.org/10.1007/JHEP09(2010)091
https://doi.org/10.1016/j.physletb.2012.11.025
https://doi.org/10.1016/j.physletb.2012.11.025
https://doi.org/10.1016/j.physletb.2013.06.028
https://doi.org/10.1016/j.physletb.2013.06.028
https://doi.org/10.1016/j.physletb.2013.01.012
https://doi.org/10.1016/j.physletb.2013.01.012
https://doi.org/10.1016/j.physletb.2013.08.024
https://doi.org/10.1016/j.physletb.2013.08.024
https://doi.org/10.1103/PhysRevC.90.054901
https://doi.org/10.1103/PhysRevC.90.054901
https://doi.org/10.1103/PhysRevLett.110.182302
https://doi.org/10.1103/PhysRevLett.110.182302
https://doi.org/10.1016/j.physletb.2013.06.057
https://doi.org/10.1016/j.physletb.2013.06.057
https://doi.org/10.1103/PhysRevC.90.044906
https://doi.org/10.1103/PhysRevC.90.044906
https://doi.org/10.1103/PhysRevLett.111.212301
https://doi.org/10.1103/PhysRevLett.111.212301
https://doi.org/10.1103/PhysRevLett.114.192301
https://doi.org/10.1103/PhysRevLett.114.192301
https://doi.org/10.1016/j.physletb.2015.02.068
https://doi.org/10.1016/j.physletb.2015.02.068
https://doi.org/10.1016/j.physletb.2015.05.075
https://doi.org/10.1016/j.physletb.2015.05.075
https://doi.org/10.1140/epjc/s10052-009-1232-7
https://doi.org/10.1140/epjc/s10052-010-1530-0
https://doi.org/10.1016/j.physletb.2012.12.051
https://doi.org/10.1016/j.physletb.2012.12.051
https://doi.org/10.1103/PhysRevC.88.014903
https://doi.org/10.1103/PhysRevC.88.014903
https://doi.org/10.1103/PhysRevLett.111.172303
https://doi.org/10.1103/PhysRevLett.111.172303
https://doi.org/10.1103/PhysRevC.89.044902
https://doi.org/10.1103/PhysRevLett.112.232301
https://doi.org/10.1103/PhysRevLett.113.252301
https://doi.org/10.1103/PhysRevLett.113.252301
http://arXiv.org/abs/1701.07145
https://doi.org/10.1103/PhysRevC.63.024903
https://doi.org/10.1103/PhysRevC.63.024903
https://doi.org/10.1016/S0370-2693(02)02038-5
https://doi.org/10.1016/S0370-2693(02)02038-5
https://doi.org/10.1016/S0375-9474(02)01023-0
https://doi.org/10.1016/S0375-9474(02)01023-0
https://doi.org/10.1016/j.nuclphysa.2008.06.012
https://doi.org/10.1103/PhysRevC.79.051902
https://doi.org/10.1103/PhysRevC.79.051902
https://doi.org/10.1016/j.physletb.2011.07.031
https://doi.org/10.1016/j.physletb.2011.01.024
https://doi.org/10.1103/PhysRevD.83.034017
https://doi.org/10.1103/PhysRevD.83.034017
https://doi.org/10.1103/PhysRevD.84.094011
https://doi.org/10.1103/PhysRevD.84.094011
https://doi.org/10.1103/PhysRevD.84.034031
https://doi.org/10.1103/PhysRevD.84.034031
https://doi.org/10.1007/JHEP11(2011)105
https://doi.org/10.1007/JHEP11(2011)105
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevLett.108.262001
https://doi.org/10.1103/PhysRevLett.108.262001
https://doi.org/10.1103/PhysRevD.87.094034
https://doi.org/10.1103/PhysRevD.87.094034
https://doi.org/10.1103/PhysRevD.93.014034
https://doi.org/10.1103/PhysRevD.93.014034
https://doi.org/10.1016/j.nuclphysa.2014.02.021
https://doi.org/10.1016/j.nuclphysa.2014.02.021
https://doi.org/10.1142/S0218301313300014
https://doi.org/10.1142/S0218301313300014
https://doi.org/10.1103/PhysRevD.90.014031
https://doi.org/10.1103/PhysRevD.90.014031
https://doi.org/10.1103/PhysRevD.92.074045
https://doi.org/10.1103/PhysRevD.92.074045
https://doi.org/10.1016/j.physletb.2015.05.051
https://doi.org/10.1016/j.physletb.2015.05.051
https://doi.org/10.1016/j.physletb.2015.04.015
https://doi.org/10.1007/JHEP01(2016)061
https://doi.org/10.1007/JHEP01(2016)061
https://doi.org/10.1103/PhysRevD.93.094030
https://doi.org/10.1103/PhysRevC.94.044907
https://doi.org/10.1103/PhysRevC.94.044907
https://doi.org/10.1103/PhysRevLett.117.162301
https://doi.org/10.1088/1367-2630/13/5/055008
https://doi.org/10.1103/PhysRevC.81.054905
https://doi.org/10.1103/PhysRevC.82.039903
http://arXiv.org/abs/hep-ph/0303204


[52] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
Annu. Rev. Nucl. Part. Sci. 60, 463 (2010).

[53] A. Dumitru and A. V. Giannini, Nucl. Phys. A933, 212
(2015).

[54] A. Dumitru and V. Skokov, Phys. Rev. D 91, 074006 (2015).
[55] A. Dumitru, L. McLerran, and V. Skokov, Phys. Lett. B 743,

134 (2015).
[56] B. Z. Kopeliovich, H. J. Pirner, A. H. Rezaeian, and I.

Schmidt, Phys. Rev. D 77, 034011 (2008).
[57] B. Z. Kopeliovich, A. H. Rezaeian, and I. Schmidt, Nucl.

Phys. A807, 61 (2008).
[58] B. Z. Kopeliovich, A. H. Rezaeian, and I. Schmidt, Phys.

Rev. D 78, 114009 (2008).
[59] J. Zhou, Phys. Rev. D 94, 114017 (2016).
[60] Y. Hagiwara, Y. Hatta, B.-W. Xiao, and F. Yuan,

arXiv:1701.04254.
[61] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 3352

(1994).
[62] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005

(2003).
[63] H. Kowalski, T. Lappi, C. Marquet, and R. Venugopalan,

Phys. Rev. C 78, 045201 (2008).
[64] A. H. Rezaeian, M. Siddikov, M. Van de Klundert, and R.

Venugopalan, Phys. Rev. D 87, 034002 (2013).
[65] E. Iancu, K. Itakura, and S. Munier, Phys. Lett. B 590, 199

(2004).
[66] H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D 74,

074016 (2006).
[67] A. H. Rezaeian and I. Schmidt, Phys. Rev. D 88, 074016

(2013).
[68] S. Munier, A. M. Stasto, and A. H. Mueller, Nucl. Phys.

B603, 427 (2001).
[69] J. Berger and A.M. Stasto, Phys. Rev. D 84, 094022 (2011).
[70] J. Berger and A. M. Stasto, J. High Energy Phys. 01 (2013)

001.
[71] N. Armesto and A. H. Rezaeian, Phys. Rev. D 90, 054003

(2014).

[72] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Phys.
Lett. B 586, 267 (2004).

[73] Y. Hatta, E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys.
A760, 172 (2005).

[74] As long as p is not too large, p≲QsðbÞ, the above integrals
over r are effectively cut off by the Gaussian e−N 0ðb;rÞ at a
value r ∼ 1=QsðbÞ. Hence, within the range for r which is
relevant for the integration, the Bessel functions J2ðprÞ and
J0ðprÞ remain positive, meaning that the sign of v2
coincides with that of the function N θðb; rÞ defined in
Eq. (33).

[75] J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-Arias,
and C. A. Salgado, Eur. Phys. J. C 71, 1705 (2011).

[76] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N.
Triantafyllopoulos, Phys. Lett. B 750, 643 (2015).

[77] J. L. Albacete, Nucl. Phys. A957, 71 (2017).
[78] J. Jalilian-Marian and A. H. Rezaeian, Phys. Rev. D 85,

014017 (2012).
[79] J. L. Albacete, A. Dumitru, H. Fujii, and Y. Nara, Nucl.

Phys. A897, 1 (2013).
[80] A. H. Rezaeian, Phys. Lett. B 718, 1058 (2013).
[81] Y. Hatta, E. Iancu, C. Marquet, G. Soyez, and D.

Triantafyllopoulos, Nucl. Phys. A773, 95 (2006).
[82] G. Beuf, Phys. Rev. D 89, 074039 (2014).
[83] E. Iancu, J. Madrigal, A. Mueller, G. Soyez, and D.

Triantafyllopoulos, Phys. Lett. B 744, 293 (2015).
[84] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C

63, 054906 (2001).
[85] J. Adam et al. (ALICE Collaboration), Phys. Rev. C 91,

064905 (2015).
[86] I. Balitsky, Nucl. Phys. B463, 99 (1996).
[87] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[88] L. Motyka and A.M. Stasto, Phys. Rev. D 79, 085016

(2009).
[89] A. Kovner and A. H. Rezaeian, arXiv:1701.00494.
[90] H. Mntysaari and B. Schenke, Phys. Rev. D 94, 034042

(2016).

EDMOND IANCU and AMIR H. REZAEIAN PHYSICAL REVIEW D 95, 094003 (2017)

094003-26

https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1016/j.nuclphysa.2014.10.037
https://doi.org/10.1016/j.nuclphysa.2014.10.037
https://doi.org/10.1103/PhysRevD.91.074006
https://doi.org/10.1016/j.physletb.2015.02.046
https://doi.org/10.1016/j.physletb.2015.02.046
https://doi.org/10.1103/PhysRevD.77.034011
https://doi.org/10.1016/j.nuclphysa.2008.03.013
https://doi.org/10.1016/j.nuclphysa.2008.03.013
https://doi.org/10.1103/PhysRevD.78.114009
https://doi.org/10.1103/PhysRevD.78.114009
https://doi.org/10.1103/PhysRevD.94.114017
http://arXiv.org/abs/1701.04254
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.68.114005
https://doi.org/10.1103/PhysRevD.68.114005
https://doi.org/10.1103/PhysRevC.78.045201
https://doi.org/10.1103/PhysRevD.87.034002
https://doi.org/10.1016/j.physletb.2004.02.040
https://doi.org/10.1016/j.physletb.2004.02.040
https://doi.org/10.1103/PhysRevD.74.074016
https://doi.org/10.1103/PhysRevD.74.074016
https://doi.org/10.1103/PhysRevD.88.074016
https://doi.org/10.1103/PhysRevD.88.074016
https://doi.org/10.1016/S0550-3213(01)00168-7
https://doi.org/10.1016/S0550-3213(01)00168-7
https://doi.org/10.1103/PhysRevD.84.094022
https://doi.org/10.1007/JHEP01(2013)001
https://doi.org/10.1007/JHEP01(2013)001
https://doi.org/10.1103/PhysRevD.90.054003
https://doi.org/10.1103/PhysRevD.90.054003
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1016/j.nuclphysa.2005.05.163
https://doi.org/10.1016/j.nuclphysa.2005.05.163
https://doi.org/10.1140/epjc/s10052-011-1705-3
https://doi.org/10.1016/j.physletb.2015.09.071
https://doi.org/10.1016/j.nuclphysa.2016.07.008
https://doi.org/10.1103/PhysRevD.85.014017
https://doi.org/10.1103/PhysRevD.85.014017
https://doi.org/10.1016/j.nuclphysa.2012.09.012
https://doi.org/10.1016/j.nuclphysa.2012.09.012
https://doi.org/10.1016/j.physletb.2012.11.066
https://doi.org/10.1016/j.nuclphysa.2006.04.003
https://doi.org/10.1103/PhysRevD.89.074039
https://doi.org/10.1016/j.physletb.2015.03.068
https://doi.org/10.1103/PhysRevC.63.054906
https://doi.org/10.1103/PhysRevC.63.054906
https://doi.org/10.1103/PhysRevC.91.064905
https://doi.org/10.1103/PhysRevC.91.064905
https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1103/PhysRevD.79.085016
https://doi.org/10.1103/PhysRevD.79.085016
http://arXiv.org/abs/1701.00494
https://doi.org/10.1103/PhysRevD.94.034042
https://doi.org/10.1103/PhysRevD.94.034042

