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We study the possibility of a Dark Matter candidate having its origin in an extended Higgs sector
which, at least partially, is related to a new strongly interacting sector. More concretely, we consider
an i2HDM (i.e. a Type-I Two Higgs Doublet Model supplemented with a Z2 under which the non-
standard scalar doublet is odd) based on the gauge group SU(2)1 × SU(2)2 × U(1)Y . We assume
that one of the scalar doublets and the standard fermion transform non-trivially under SU(2)1
while the second doublet transforms under SU(2)2. Our main hypothesis is that standard sector
is weakly coupled while the gauge interactions associated to the second group is characterized by a
large coupling constant. We explore the consequences of this construction for the phenomenology
of the Dark Matter candidate and we show that the presence of the new vector resonance reduces
the relic density saturation region, compared to the usual i2DHM, in the high Dark Matter mass
range. In the collider side, we argue that the mono-Z production is the channel which offers the
best chances to manifest the presence of the new vector field. We study the departures from the
usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging
even in the mono-Z channel since the typical cross sections are of the order of 10−2 fb.
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I. INTRODUCTION

The discovery of the Higgs boson [1, 2] crowned Standard Model (SM) with great success. However, the High
Energy Physics community is unanimous to suspect that the SM is not a complete description of the non-gravitational
interactions. Three main open questions justify this general conviction: a natural origin for the electroweak scale,
the origin of neutrino masses and the origin of Dark Matter (DM). The first of these problems has motivated the
construction of many extensions of the SM. Some of them are based on the elegant idea that the electroweak scale
may be dynamically produced in the context of a new strong interaction. Of course, this proposal inevitably leads to
the prediction a new composite sector. On the other hand, although many observations point out to the existence of
DM, we have few clues about its nature. A very popular possibility is that DM consists of neutral massive particles
(with masses ranging from some GeV’s to some TeV’s) with annihilation cross section of the same order of magnitude
than the cross sections obtained from the weak interaction (the so called WIMP). One of the best known models that
incorporate this kind of DM candidate is a type-I 2HDM where one of the doublets is odd under a new (and usually
ad-hoc) Z2 symmetry. This model is usually referred as the Inert Two Higgs Doublet Model or i2HDM [3–5]. It is
tempting to merge the ideas of an extended Higgs sector and compositeness, at least partially. Indeed already some
authors have explored the phenomenology of the 2HDM in the context of traditional dynamical electroweak symmetry
breaking [6] and the so called Composite Higgs Models where the scalar doublets arise as pseudo-Nambu-Goldstone
bosons [7–12]. Additionally, for some particular models, it has been studied the phenomenological consequences of a
two Higgs doublet sector coupled to composite vector resonances [11, 13]. In this paper, we focus on a i2HDM where
one of the scalar doublets ( the one which is odd under the Z2 symmetry) is supposed to belong to a new strongly
interacting sector and is directly coupled to a vector resonance. This is in consonance with the very appealing idea of
having a complex hidden sector with its own interactions and structure levels. We explore mainly the consequences
of the new heavy vector on the phenomenology of the DM candidate. Additionally we argue that the best chance to
observe a signature of the new vector resonance at the LHC comes from the single production of a gauge boson plus
missing transverse energy. To achieve our goals, we have organized our paper in the following way: in section II we
describe our theoretical construction emphasizing the introduction of the new heavy vector. In section III we comment
on the a priori experimental and theoretical constrains whcih are relevant for our model. In section IV, we describe
our results for the phenomenology of the DM candidate while in section V we focus on the mono-Z production at the
LHC. Finally in sectionVI we state our conclusions.

II. THE MODEL

Following the idea of Hidden Local Symmetry (HLS) [14], we introduce the new vector resonance as the effective
gauge fields of a (hidden) gauge group which we call SU(2)2. Consequently, our model is based on the local group
SU(2)1 × SU(2)2 × U(1)Y . We assume the the first group is associated to the elementary or weak interacting sector
while the second group describes a composite or strongly interacting sector. A fundamental hypothesis under our
construction is that standard left-handed fermions and one of the scalar doublets (φ1) transform under SU(2)1 (and
U(1)Y ) while the second scalar doublet (φ2) transforms under SU(2)2 (and the hypercharge group) as illustrated in

Figure 1. Additionally, we introduce a bi-doublet field which transforms as U1ΣU†2 with U1 and U2 elements of SU(2)1
and SU(2)2 respectively. With this ingredients, and assuming that φ2 is odd under a new Z2 symmetry, the most
general Lagrangian (with operators up to dimension 4) for the gauge and scalar sector is:

FIG. 1. Moose diagram representing the non-Abelian part of the group structure underlying our model. The Σ link field is a
bi-doublet while the scalars φ1 and φ2 are doublets of SU(2)1 and SU(2)2 respectively.
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where

DµΣ = ∂µΣ− ig1A1µΣ + ig2ΣA2µ

Dµφj = ∂µφj − igjAjµφj

and u is an energy scale which characterize the new strong sector.
The SU(2)1 × SU(2)2 is spontaneously broken down to the diagonal subgroup, which we identify with SU(2)L,

when the Σ field acquires a v.e.v 〈Σ〉 = 1. In this phase, Lagrangian (1) becomes:
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and a mass mixing term appears in the gauge sector. On the other hand, the electroweak symmetry breaking occurs,
as in the SM, when φ1 gets a v.e.v: 〈φ1〉 = (0, v/

√
2)T . Notice that the Z2 symmetry prevents φ2 from acquiring a

v.e.v. This fact assures that φ1 is the SM Higgs doublet and forbid the appearance of any mass mixing term in the
scalar sector. Finally, notice that, because of the same Z2 symmetry, Yukawa terms can only be constructed with φ1.

After these symmetry breaking processes, the following non-diagonal mass matrices are generated for the neutral
and charged vector bosons:

M2
N =

v2

4

 (1 + a2)g21 −a2g1g2 −g1gy
−a2g1g2 a2g22 0
−g1gy 0 g2Y



M2
C =

v2

4

[
(1 + a2)g21 −a2gg2
−a2g1g2 a2g22

]
where a = u/v and g1, g2 and gY are the coupling constants associated to SU(2)1, SU(2)2 and U(1)Y . When M2

N is
diagonalized in the limit where g2 � g1, we obtain the following mass eigenstates for the neutral sector:

Aµ =
gY√
g21 + g2Y

A3
1µ +

g1gY

g2
√
g21 + g2Y

A3
2µ +

g1√
g21 + g2Y

Bµ

Zµ = − g1√
g21 + g2Y

A3
1µ −

g21

g2
√
g21 + g2Y

A3
2µ +

gY√
g21 + g2Y

Bµ

ρ0µ = −g1
g2
A3

1µ +A3
2µ.
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where ρ denotes the new heavy vector resonance.
Similarly, the eigenstates of the charged sector (in the same limit) are:

W±µ = A±1µ +
g1
g2
A±2µ

ρ±µ = −g1
g2
A±1µ +A±2µ

where, as usual, A±nµ = 1√
2

(
A1
nµ ∓A2

nµ

)
.

In the same limit, the masses of the vector states can me expressed as:

MA = 0 (exact) (3)

MZ ≈
v
√
g21 + g2y

2

[
1− 1

2

g41
g22(g21 + g2y)

]
(4)

Mρ0 ≈
avg2

2

[
1 +

g21
2g22

]
(5)

MW ≈
vg1
2

[
1− g21

2g22

]
(6)

Mρ± ≈
avg2

2

[
1 +

g21
2g22

]
(7)

Notice that to first order in g1/g2, we can write:

g1
g2
≈ aMW

Mρ

The quantity g1/g2 is supposed to be small. This is the precise meaning of the assumption that the non-standard
sector is strongly interacting. As we will explain below, in this work we consider values of Mρ in the 2-4 TeV range
and a = 3, 4, 5, obtaining g1/g2 < 0.2.

In the scalar sector, the spectrum is straightforward since, as we already emphasized, no mass mixing term arise
due to the Z2 symmetry. Consequently, near the minimum of the potential, the scalar doublets can be parametrized
as:

φ1 =
1√
2

(
0

v +H

)
φ2 =

1√
2

( √
2h+

h1 + ih2

)
(8)

where H is the SM-like Higgs boson and is identified with the observed 125 GeV scalar state. Notice that the Z2

symmetry makes the lightest component of φ2 stable. As it is usually done, we assume that h1 is the stable state and,
consequently, the DM candidate.

Our model has seven free parameters: u, g2, m2 and λi with i = 2...5 (λ1 is fixed by the mass of the 125 GeV
scalar observed at the LHC), however not all of them are equally significant for our research. It is convenient, for
phenomenological proposes to work with the following parameters:

Mh1
, Mh2

, Mh± , Mρ, λ345, λ2, a (9)

where Mh1 ,Mh2 ,Mh± are the physical masses of the new scalars, Mρ is the mass of the vector resonance and λ345 =
λ3 + λ4 + λ5. Notice that λ345 plays a crucial roll controlling the interaction between the dark matter and the SM
Higgs. According to this, we can rewrite the coupling constants as a function of the free parameters

λ3 = λ345 + 2
M2
h± −M2

h1

v2
λ4 =

M2
h1

+M2
h2
− 2M2

h±

v2
λ5 = −

M2
h2
−M2

h1

v2

m2
2 = λ345

v2

2
−M2

h1
g2 =

2Mρ

va
(10)
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III. EXPERIMENTAL AND THEORETICAL CONSTRAINS

The model parameter space can be constrained from theoretical restrictions coming from the analysis of the potential
and experimental searches as well. In this section we mention all the restriction that we are account.

• Vacuum stability: In order to perform calculations around a minimum point without loose stability of the
potential we need that there is no direction in field space along which the potential tends to minus infinity. This
leads to the well-known conditions [15]

λ1 > 0, λ2 > 0, 2
√
λ1λ2 + λ3 > 0, 2

√
λ1λ2 + λ3 + λ4 + λ5 > 0 (11)

• Neutral vacuum: Another important requirement is that the vacuum must be electrically neutral. This can
be guarantied if

λ5 < 0 and λ4 + λ5 < 0 (12)

The last condition (Eq.(12)) assures us that Mh1
is the lightest particle which is odd under the Z2 symmetry.

• Inert vacuum: We need to consider the case where only the standard model field φ1 get a vacuum expectation
value in order to avoid a mixing term between dark matter and the Higgs boson which will be catastrophic for
abundance of relic density. According to reference [16] the vacuum stability condition is satisfied provided that:

m2
1 > 0 and m2

2 <

√
λ2
λ1
m2

1 (13)

In terms of our set of independent parameters, these conditions translate into:

M2
h1
>
v2

2

(
λ345 − 2

√
λ1λ2

)
(14)

This is a very important constraint because it places an upper bound on λ345 for a given DM mass Mh1
.

• Perturbatibity: All the quartic couplings of the potential must be limited by perturbatibity constraint, there-
fore

|λi| ≤ 8π (15)

• Unitarity: According to reference [17] we can impose tree-level unitarity constraints if the eigenvectors of the
scattering matrix elements between scalars and gauge bosons satisfy

|ei| ≤ 8π (16)

where the parameters ei are defined as

e1,2 = λ3 ± λ4 , e3,4 = λ3 ± λ5 (17)

e5,6 = λ3 + 2λ4 ± 3λ5 , e7,8 = −λ1 − λ2 ±
√

(λ1 − λ2)2 + λ24 (18)

e9,10 = −3λ1 − 3λ2 ±
√

9(λ1 − λ2)2 + (2λ3 + λ4)2 (19)

e11,12 = −λ1 − λ2 ±
√

(λ1 − λ2)2 + λ25 (20)

• Electroweak precision Test: In the i2HDM the electroweak radiative corrections are affected by the relation
between the scalar masses [5] alongside the Higgs mass and Z boson mass. The expressions for the S and T
values are:

S =
1

72π

1

(x22 − x21)3
[
x62fa(x2)− x61fa(x1) + 9x22x

2
1(x22fb(x2)− x21fb(x1)

]
(21)
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where x1 =
Mh1

Mh±
, x2 =

Mh2

Mh±
, fa(x) = −5 + 12 log(x), fb(x) = 3− 4 log(x) and

T =
1

32π2αv2
[
F (M2

h± ,M2
h2

) + F (M2
h± ,M2

h1
)− F (M2

h2
,M2

h1
)
]

(22)

where the function F (x, y) is defined by

F (x, y) =

{
x+y
2 −

xy
x−y log

(
x
y

)
, x 6= y

0, x = y

Written in this form, according to Ref [18], the contribution to S and T shows explicitly that we cannot
distinguish the CP properties of h1 and h2. With U fixed to be zero, the central value of S and T , assuming a
SM Higgs boson mass of mh = 125 GeV, are given by [19]

S = 0.06± 0.09, T = 0.1± 0.07 (23)

with the correlation coefficient +0.91.

• LHC constrains on vector resonances: In general, vector resonances may produce detectable signals at
colliders through channels like dijet production, dilepton production, the associate production of a Higgs boson
and a gauge boson, and the production of two gauge bosons. Also the Higgs decay rate into two photons
(which is loop process) and the oblique parameter S, T may receive sensible corrections from heavy charged
fields. However, in our case the new vector resonance couples to the SM fields only through mixing terms
which are suppressed by factors g1/g2. Moreover, previous studies suggest that the experimental constrains are
largely satisfied if the new resonance is heavier than 2.4 TeV [20–22]. As a matter of example, we compare the

2000 2200 2400 2600 2800 3000
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Mρ(GeV)

σ
(p
p
→
je
t,
je
t)
(p
b
)

FIG. 2. σ(pp → ρµ → jj) computed in the kinamatic region where the ρµ decay channels into a pair of non-standard scalars
are open (lower solid line) or closed (higher solid line). a = 3

cross section predicted by our model for the process pp → ρµ → jj with the upper limits set by ATLAS for
dijet resonances [23], as shown in Figure 2. Our calculations are performed in two different kinematic regimes
depending on whether the ρµ decay channels into a pair of non-standard scalars are open or not. When these
channels are open they dominate over the decay into SM particles since the interaction in the former case
is proportional to g2 while in the latter case is suppressed by a factor g1/g2. This makes the resonant dijet
production quit unprovable as shown by the lowest continuous line in Figure 2. The upper continuous line, on the
other hand, shows the predicted cross section when the vector resonance is not able to decay into non-standard
scalars. Notice that in the appropriate kinematic regime, values of Mρ < 2.4 TeV are allowed.

• LHC limits from Higgs di-photon decay: The decay rate of the Higgs bosons into two photons does not
constrain very much the mass of the vector resonance either because the Higgs boson couples to ρµ only as a result
of the mixing between A1µ and A2µ and, consequently, the Hρ+µ ρ

−
ν vertex is suppressed by a factor (g1/g2)2.

However, the interaction vertex Hh+µ h
−
ν is governed by the λ3 quartic coupling which can be constrained through
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loop calculations. We can use the limit coming from ATLAS-CMS Higgs data analysis [24] to set a restriction
on λ3 using the experimental value:

BrBSM (H → γγ)

BrSM (H → γγ)
= µγγ = 1.16+40

−36 (24)

• Invisible Higgs-decay: Interactions among Higgs boson and the new sector (inert scalars and vector resonance)
are allowed in this model, therefore the possibility of new invisible decay channels are open. Those channels could
lead to deviations of Higgs boson decay width from the SM value. Using results that comes from ATLAS [25]
at 95% CL we can restrict the invisible Higgs decay to be less than

Br(H → invisible) < 28% (25)

which is also compatible with the CMS result [26].

• LEP limits on inert scalars: In order to not affect the precise measurements of W and Z widths we need
to impose restrictions to the mass of the inert scalars demanding that Γ(W± → h1h

±), Γ(W± → h2h
±),

Γ(Z → h1h2) and Γ(Z → h+h−) channels are kinematically closed. This leads to the following constraints:

Mh1
+Mh± > MW± Mh2

+Mh± > MW±

Mh1
+Mh2

> MZ 2Mh± > MZ (26)

• Relic Density limits: We analyze the abundance of dark matter using micrOMEGAs [27–29] package. This
program solves the Boltzmann equation numerically, using CalcHEP [30] to calculate all of the relevant cross
sections. The program consider the case when Mh1

< MW ,MZ taking into account the annihilation into 3-body
final state from V V ∗ or 4-body final state from V ∗V ∗ (V = W±, Z). Co-annihilation effects are taken into
account as well. We require that our predictions for the relic density be in agreement with the PLANCK [31, 32]
measurement:

ΩPlanck
DM h2 = 0.1184± 0.0012 (27)

• Direct Detection limits: Using the first dark matter results coming from XENON1T [33] with 34.2 live
days of data acquired between November 2016 and January 2017 we have evaluated the spin-independent cross
section of DM scattering off the proton, σSI , also using micrOMEGAs.

IV. DARK MATTER PHENOMENOLOGY

As we explained above, our model has a 7-dimensional parameter space, however we can have a good phenomeno-
logical overview of the model focusing only on 3 specific parameters (λ345, Mh1

, Mρ) and fixing all the other ones to
which the phenomenological observables have poor sensibility. For instance, the dark matter candidates and the SM
fields only interact through the Higgs boson, the electroweak gauge bosons and the new heavy vector; but, since the
interaction with the standard gauge bosons is governed by the electroweak gauge couplings which are fixed, the only
relevant free parameter is λ345, the dark matter mass itself (Mh1

) and Mρ.
In Figure 3 we show a 2-dimensional section of the parameter space where we have the dark matter relic density

as a function of Mh1
for several values of λ345. For simplicity, in this analysis we always take Mh2

= Mh± . With
this assumption an important kinematic parameter is ∆M ≡ Mh2

−Mh1
. Now, two qualitatively different scenarios

can be distinguished: a quasi-degenerate case where ∆M = 1 GeV and a non-degenerate case ∆M = 100 GeV. In
both we considerer Mρ = 3000 GeV, a = 2 and λ2 = 1. We can notice that for 10 GeV ≤Mh1

�Mρ/2 GeV (which
we will refer as the low mass region) the model reproduces the same pattern of relic density predicted by the usual
the i2HDM, as expected. It is only when Mh1

approaches to Mρ/2 that the effect of the vector resonance ρ becomes
important.

In the reference [18] there is a detailed phenomenological explanation of what happens in the low mass region, so
we will just briefly comment on it. Here, we can distinguish two different asymptotic behaviors: the first one for 10
GeV < Mh1

< 50 GeV and the second one (Mh1
> 200) GeV.

In Figure 3a), which shows the quasi-degenerate case, we can see that below 62.5 GeV (i.e half of the Higgs
boson mass) the co-annihilation effects between the inert scalars become important because of the appearance of new
annihilation channels, pushing the DM Relic density under the experimental PLANCK limit. On the other hand, in
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FIG. 3. Relic density ΩDMh
2, as a function of Mh1 for different values of λ345 in a quasi-degenerate scenario (a) where

Mh2 = Mh± = Mh1 + 1 and a no-degenerate scenario (b) where Mh2 = Mh± = Mh1 + 100. In both cases we fix the values of
Mρ = 3000 GeV, a = 2 and λ2 = 1. The horizontal red line corresponds to the relic density measurements PLANCK limits.

the non-degenerate case (when ∆M = 100 GeV), as seen in Figure 3b), co-annihilation is suppressed generating an
enhancement of the ΩDMh

2 becoming even 3 orders of magnitude above the PLANCK limit for small values of λ345
(∼ 0.01).

Now, in the second case (i.e for Mh1
> 200 GeV), when ∆M = 1 GeV the quartic coupling becomes small enough

to produce a significant suppression of the Dark Matter annihilation into longitudinal polarized gauge bosons. This
effect increases the relic density which is capable of reaching the PLANCK limit even considering the effects of co-
annihilation. On the other hand, for the non-degenerate case, as seen in Figure 3b), the value ∆M is large and the
average annihilation cross sections of the processes h1h1 → WLWL and h1h1 → ZLZL are increased, making the
abundance of relic density too low to reach the saturation limit. This generates the flat asymptotic behavior for large
values of Mh1 .

When ΩDMh
2 reaches the PLANCK limit in the high mass region, but now considering the ∆M = 1 GeV case, the

annihilation average cross section through the vector resonance starts to be important as the value of Mh1
increases.

At Mh1
= Mρ/2 GeV the value of the relic density distribution decreases dramatically due to co-annihilation of h1

and h2 into an on-shell ρ vector. The wide deep around 3000 GeV (see Figure 3a)) corresponds to the opening of
annihilation channels h+h− → ρ→ ρ+ρ−, h1h1 → ρ+ρ− and h2h2 → ρ+ρ−. In the case where ∆M = 100 GeV, the
main annihilation processes are h1h1 → W+W− and h1h1 → ZZ, although there is a small contribution (∼ 4%) of
the process h1h

+ → ρ+H via s-channel ρ boson interchange which generate the small negative peak at Mh1
= Mρ/2.

Finally, in this case, the last deep at Mh1
= 3000 GeV is produced through the opening of the annihilation channels

h1h1 → ρ+ρ− and h1h1 → ρ0ρ0 .
In order to have a complete visualization of how the vector resonance affects the i2HDM, we performed a random

scan over the 7-dimensional parameter space considering all the experimental and theoretical constraints mentioned
in section III. In our analysis, we exclude all the points in the parameter space where over-abundance take place
because they are considered non-physical. However, we keep the regions of points which produce under-abundance
since it only means that an additional source of DM is needed. Consequently, we used a re-scaled Direct Detection
cross section σ̂SI = (ΩDM/ΩPLANCK) × σSI which allows us to take into account the case when h1 contribute only
partially to the total amount of DM. The range of the scan for each free parameter is summarized en Table I.

As it was previously explained, our model reproduces the same pattern of ΩDMh
2 as the i2HDM for Mh1 �Mρ/2

because the interaction between the SM particles and the vector resonance (ρµ) is suppressed by the factor (g1/g2).
Therefore we will focus on the high mass region where the interaction with the vector resonance is more sensitive.

In Figure 4, we show projections in 2-dimensional planes of the scan as a color map of DM relic density where we
show the planes (Mh1

, λ345) and (Mh1
,Mρ). In Figure 4a), we can see the effect of the vacuum stability constraint

on λ345, making it to satisfiy the bound λ345 & −1.47.
It is easy to recognize the DM annihilation into an on-shell vector resonance (h1h2 → ρ) at Mh1 ≈ Mρ/2 GeV

through the substantial DM relic density decrease in a narrow sector represented by the diagonal blue pattern in
Figure 4b).

It is important to stress that Mρ/2 establishes a border in the parameter space for the saturation of relic density.
For Mh1

> Mρ , the annihilation cross section becomes more intense and the abundance of relic density decreases
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TABLE I. Range of the parameter space

Parameter min value max value

Mh1 [GeV] 480 4500

Mh2 [GeV] 480 4500

Mh± [GeV] 480 4500

Mρ [GeV] 2500 4500

λ345 -5 5

λ2 0 5

a 3 5
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FIG. 4. 2D projections of the 7D random scan of the model parameter space restricted to (450 GeV, 4500 GeV) for Mh1 , (2500
GeV, 4500 GeV) for Mρ and (-2,5) for λ345 considering all constraints except under-abundance of DM.

below the experimental PLANCK limit. This border is clearly seen in Figure 5b) where we present the parameter
space which at the same time reproduces the value of ΩDMh

2 observed by PLANCK and is consistent with all the
experimental constrains. In other words, the interactions due to the new vector resonance reduce the saturation
region in the high mass zone compared to i2HDM because when the DM reaches the limit Mh1 ≈ Mρ the channels
h1h2 → ρ+ρ− and h1h2 → ρ0ρ0 become open causing the abundance of DM to fall down by at least one order of
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FIG. 5. 2D projections of the 7D random scan of the model parameter space restricted to (450 GeV, 4500 GeV) for Mh1 , (2500
GeV, 4500 GeV) for Mρ and (-2,5) for λ345 considering all constraints plus the lower PLANCK limit.
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magnitude, as we can clearly see from Figure 4b).
As we stressed before, in the high mass zone it is possible to reach the saturation limit of the relic density due to

the high level of degeneracy of the three inert scalars, which turns out to be no more than a few GeV. This mass
split is closely related to the quartic coupling of the potential. A small difference of mass implies small values of
the λ parameters which translates into a low average annihilation cross section of the dark matter into longitudinal
polarized gauge bosons, generating an enhancement in the abundance of relic density. This can be seen in Figures 3a)
and 5)a) where λ345 can reach higher values as Mh1

increases. This effect is maintained until the threshold is reached
at Mh1

= 2250 = MMAX
ρ /2 GeV, where MMAX

ρ = 4500 GeV is the maximum value of Mρ used in our parameter
space.

V. PREDICTIONS FOR THE LHC: MONO-Z PRODUCTION

At the LHC, the new vector resonance is mainly produced by quark annihilation. In consequence, the total
production cross section σ(pp → ρ) is proportional to (g1/g2)2 ≈ a2M2

W /M
2
ρ . In Figure 6 we show our predictions

for σ(pp → ρ0) at the LHC with
√
s = 13 TeV. The tiny cross sections indicate that it is a very challenging task to

discover the new heavy vector at the LHC specially when we consider only standard particles in the final states, since
the interaction of the heavy vector with particles of the SM is suppressed by factors (g1/g2).

a=3
a=4
a=5

σ(
pp

→
 ρ

0  ) 
(f

b)

0,1

1

10

Mρ (GeV)
2000 2250 2500 2750 3000 3250 3500

FIG. 6. σ(pp→ ρ0) vs. Mρ at the LHC for
√
s = 13 TeV

However, we can expect to have a better chance of getting observable signals if we consider final states containing
the new scalar alongside some standard particle. A promising process is pp→ h1h1V (with V = Z or W±) . In this
process the scalars are not detected but they produce a significant amount of missing transverse energy, as shown in
Figure 7 (right). Hereafter, we focus on the mono-Z production. Figure 7 (left) shows the predicted cross section
for the process pp → ρ → h1h1Z computed for three values of the a parameter (a = 3, 4, 5) while other relevant
parameters were took as Mh1 = 800 GeV, Mh2 = Mh± = 810 GeV, λ345 = −0.1 and λ2 = 2.0. As we see, for Mρ

between 2 and 3.5 TeV, the cross section lies in the range of (0.05− 1.5)× 10−2 fb.
In order to compare the predictions of our model to the usual i2DHM ones, we compute σ(pp → h1h1Z) for

the benchmark points 1 and 6 of reference [18] defined by Mh1 = 55 GeV, Mh2 = 63 GeV, Mh± = 150 GeV,
λ345 = 1.0 × 10−4, λ2 = 1.0 (BM1) and Mh1 = 100 GeV, Mh2 = 105 GeV, Mh± = 200 GeV, λ345 = 2.0 × 10−3,
λ2 = 1.0 (BM6) respectively. The computed cross sections include the kinematic cut ET/ > 100 GeV for both
benchmark points. In Figure 8, we show our results, alongside the cross section predicted in the usual i2HDM, for
BM1 (left) and BM6 (right). In both cases we can see an important enhancement in the low Mρ region compared to
the usual i2DHM.

Additionally, we show in Figure 9 our prediction for σ(pp → h1h2Z) at the
√
s = 13 TeV LHC considering the

benchmark point BM6. This process also contributes to the mono-Z production provided that the mass splitting
between h1 and h2 is small.
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FIG. 7. Left: σ(pp → h1h1Z) at the LHC for
√
s = 13 TeV, a = 3 (dashed), a = 4 (continuous),a = 5 (dotted). We use

Mh1 = 800 GeV, Mh2 = 810 GeV, λ345 = −0.1 and λ2 = 2.0. Right: Normalized missing ET distribution
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FIG. 8. Left: σ(pp→ h1h1Z) vs. Mρ at the
√
s = 13 TeV LHC considering the benchmark point BM1. Right: Idem but for

the benchmark point BM6

VI. CONCLUSIONS

In this work, we have extended the i2DHM by adding a new heavy vector triplet and assuming that the inert
scalar doublet is strongly coupled to the new spin-1 field. The theoretical construction was based on the Hidden
Local Symmetry idea and thus the new vector field was introduced by enlarging the gauge symmetry to SU(2)1 ×
SU(2)2 × U(1)Y . The hypothesis of a strong interaction between the heavy vector field and the inert scalar doublet
was implemented making the inert scalar field to be a doublet of SU(2)2 while the standard field (including the Higgs
filed) were supposed to transform non-trivialy only under SU(2)1.

In general, the model is allowed by current data provided that Mρ > 2.4 TeV but lower values of Mρ are possible
when the decay of the new vector into non-standard scalar is open. Indeed, in this kinematic region the discovery of
ρ seems to be rather challenging at the LHC specially when it is considered its decay only into standard particles. A
more interesting possibility is the production of a Z boson in association with two h1 particles since the total process
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a=3
a=4
a=5

σ(
pp

→
 h

1 h
2 Z

) (
fb

)

0,2

0,225

0,25

0,3

0,325

Mρ (GeV)
2000 2250 2500 2750 3000 3250 3500

FIG. 9. σ(pp→ h1h2Z) vs. Mρ at the
√
s = 13 TeV LHC considering the benchmark point BM6

(ρ production and decay) is less suppressed than the previous case. Naturally, the h1 particles would escape detection
but they will produce a significant amount of missing transverse momentum. However, the predicted cross sections
are quite small, although an important enhancement with respect to the usual i2DHM is observed for lower values of
Mρ, lying in the [0.1-0.3] fb range.

However, the presence of the new heavy vector is not innocuous for the phenomenology of the Dark Matter candidate.
In fact, it introduces new annihilation channels which are important in the region of large Dark Matter mass. The
most important consequence of this phenomenon is the reduction of the relic density saturation zone compared with
the usual i2DHM.
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