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1 Introduction

If neutrinos are Majorana particles, one can roughly estimate their mass as:

mν ∝
v2

Λ
×
( 1

16π2

)n
× ε×

( v
Λ

)d−5
. (1.1)

Here, Λ is the energy scale of new physics, where lepton number violation (LNV) occurs

and v is the standard model vacuum expectation value. The different terms in eq. (1.1)

can be understood easily. The first term corresponds to the famous Weinberg operator,

OW ≡ Od=5 ∝ LLHH [1]. This operator can be generated either at tree-level or at loop

level. The second term in eq. (1.1) takes into account this fact, with n = 0, 1, 2, · · · being

the number of loops. Then, there are models of neutrino mass, in which the Weinberg

operator is suppressed by some small factor ε, which could be either due to some small

coupling in the corresponding model or due to some nearly conserved symmetry. R-parity

violating supersymmetry is an example of the former [2, 3], models such as the inverse [4]

or the linear [5, 6] seesaw are examples of the latter. And, finally, neutrino masses could

be due to higher dimensional operators. This is expressed by the last term in eq. (1.1),

with d = 5, 7, · · · the dimension of the operator.
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In this paper we will focus on d = 7 neutrino mass models at 1-loop order. Our

aim is to give a systematic analysis of such models, constructing first all possible 1-loop

topologies and then identify those topologies, which allow to construct genuine models.

Here, we define genuine models such models, where the 1-loop d = 7 contribution to the

neutrino mass gives the leading order contribution. This assumption implies, of course,

that both the d = 5 and the d = 7 tree-level, as well as the d = 5 1-loop, contributions

should be absent.

d = 5 neutrino masses have been studied extensively in the literature. In [7] it was

shown that there are only three tree-level realizations of OW at tree-level. A systematic

analysis of the Weinberg operator at 1-loop level was presented in [8], at 2-loop level in [9],

see also [10] for a general discussion of tree versus loop neutrino masses.

Disregarding derivative operators, the authors of [11] have written down all ∆L = 2

operators up to d = 11. Only one of these operators is important for us here:

Od=7 ∝ LLHHHH† (1.2)

All other d = 7 operators in the list of [11] will lead to d = 5 1-loop neutrino mass models,

while the d = 9 and d = 11 operators can lead only to d = 7 neutrino masses, if the

underlying model is 2-loop or higher. Note that ∆L = 2 operators with derivatives have

been studied in [12]. Two operators with derivatives at d = 7 exist, but neither can lead

to a 1-loop d = 7 model, see also the discussion in [13].

Bonnet et al. [14] analyzed the d = 7 operator of eq. (1.2) at tree-level in detail. As

noted in this work, the d = 7 operator of eq. (1.2) will always also generate a higher order

d = 5 neutrino mass:

1

Λ3
LLHHHH† → 1

16π2

1

Λ
LLHH (1.3)

One can straightforwardly estimate that this loop contribution will become more important

than the tree-level one if (Λ/v) >∼ 4π. This means Λ <∼ 2 TeV is required for the d = 7

contribution to dominate. Since this is unavoidable in the standard model (SM), the

authors of [14] considered a two Higgs doublet extension of the SM in their discussion of

the d = 7 tree-level neutrino mass.1 We instead will stick to only the SM Higgs and take

eq. (1.3) as a motivation that any d = 7 model of neutrino mass must have new particles

below 2 TeV, otherwise it will not give the leading contribution to the neutrino mass matrix.

As mentioned above, both d = 5 and d = 7 tree-level contributions should be forbidden,

otherwise the d = 7 1-loop contribution might be just some minor correction to the neutrino

mass matrix. Absence of these lower order contributions could be attributed to either: (i)

the existence of some symmetry; or (ii) absence of fields which generate neutrino masses at

lower order. An example of the former at d = 5 is the scotogenic model [15]. In this model,

a right-handed neutrino (plus an extra doublet scalar) exists, but due to a Z2 symmetry,

there is no tree-level d = 5 neutrino mass.2 Instead neutrinos have mass at (d = 5) 1-loop

1HH† is a singlet under any discrete symmetry. With more than one Higgs it is possible to introduce

an additional discrete symmetry, under which the two Higgses transform differently.
2The well-known bonus of the Z2 symmetry is that it allows to “stabilize” the lightest Z2 odd particle,

thus relating the stability of the dark matter to the generation of neutrino masses.

– 2 –
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order. The classic example for (ii) is the Zee model [16]. In the Zee model, none of the

particles necessary for a tree-level seesaw exist. Instead an additional charged singlet scalar

(plus an additional doublet scalar) generate neutrino masses radiatively.

Two comments might be in order. First, with the use of non-Abelian discrete sym-

metries it is possible to construct viable models, genuine in the sense that they can give

the leading contribution to the neutrino mass matrix. We will not discuss in detail such

models, since the use of discrete symmetries for d = 7 neutrino masses have been discussed

in this context already in a number of references, see for example [14, 17–20].

Second, the example models, which we will discuss later on, all have explicit lepton

number violation (LNV). One could construct extensions of these models, in which the

LNV is spontaneous. In that case, a massless Goldstone boson would appear, usually

called Majoron in the literature. We will not discuss the phenomenology of Majorons here

and only note in passing that no new topologies would be generated in such models, with

respect to the explicitly LNV models we consider.

Finally, we mention that we will also not consider d = 7 operators with additional

singlets, see for example [21, 22].

The rest of this paper is organized as follows. In the next section, we will first give a

short summary of neutrino masses at tree-level at d = 5 and d = 7, as well as d = 5 at

1-loop order. This provides the basis for the discussion in section 3. Section 3 then provides

the core of our present work. It discusses all possible topologies and classifies them into

different groups. The section then also introduces the three most minimal example models

that one can construct at d = 7 1-loop order. We then close with a short summary. More

complete lists of topologies and diagrams are relegated to the appendix.

2 Preliminaries

Since we are interested in identifying models, in which a 1-loop d = 7 diagram gives the

leading order contribution to the neutrino mass matrix, we first need to discuss briefly

neutrino masses at lower order. When discussing possible models will use S (and φ) for

scalars and ψ (χ) for fermions. For a more compact notation we will also use a notation

which gives the SU(2)L representation and hypercharge in the form RY with a superscript

S or F , where necessary, i.e. for example 5S1 is a scalar 5-plet with Y = 1. Note that, for

some of the fields, particular symbols are common in the literature, such as νR, ∆ and Σ

for the type-I, type-II and type-III seesaw.

2.1 Tree-level d = 5

As noted in [7], there are only three possibilities to de-construct the Weinberg operator at

tree-level. A seesaw type-I is generated via the introduction of a right-handed neutrino,

νR ≡ 1F0 [23–25]. It generates Dirac mass terms for the active neutrinos via ν̄RHL. For

the singlet a Majorana mass term is allowed, MM ν̄
c
RνR, which implies ∆L = 2. The type-

II seesaw requires a scalar triplet ∆ ≡ 3S1 [26–28]. Here, the simultaneous presence of

the couplings L∆L and H∆†H violates lepton number ∆L = 2. And, finally, a type-III

seesaw [29] can be generated with a fermionic triplet Σ ≡ 3F0 . Here, the vector-like mass

– 3 –
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×Ψ Ψ

LL

H† S

H
H

H

Figure 1. Tree-level d = 7 neutrino mass diagram, for the model described in [30]. Ψ = 3F
1 and

S = 4S
3/2.

term MΣΣ̄cΣ is the source of the lepton number violation. Note, that type-I and type-III

seesaw are generated by the same topology, reducing the total number of d = 5 topologies

at tree-level to two.

2.2 Tree-level d = 7

At d = 7 level one can construct five different topologies, one of which however can not lead

to any renormalizable model. The remaining four topologies have been discussed in [14].

Only one of these topologies can generate a genuine d = 7 neutrino mass model in our

sense, see figure 1. All other models will require additional symmetries to avoid d = 5

tree-level neutrino masses.

This genuine d = 7 tree-level model, BNT model in the following, was first discussed

in [30]. For a discussion of lepton flavour violation in the BNT model see [31]. The model

requires two new particles beyond the SM field content: (i) A (vector-like) triplet fermion,

Ψ = 3F1 .3 And (ii) a scalar quadruplet S ≡ 4S3/2. Note that the quadruplet is the smallest

representation which allows a contraction S0(H0)3.

2.3 1-loop d = 5

In addition to the tree-level, there are many 1-loop d = 5 models. The classical example is

the Zee model [16]. A systematic analysis of all 1-loop d = 5 topologies has been given in [8].

In total, 6 topologies where found, but only two of them (denoted as T-1 and T-3) can give

genuine models in our sense. All other topologies lead either to non-renormalizable models

or diagrams with infinite loop integrals (thus representing loop corrections to tree-level

quantities)4 or can be understood as finite 1-loop realizations of some particular vertex of

one of the tree-level d = 5 seesaws. Topologies T-1 and T-3 lead to a total of four diagrams

shown in figure 2. The Zee model [16] falls within category T-1-ii, the scotogenic model of

Ma [15] is an example of T-3.

3Its vector partner 3F
−1 is needed for a (effectively lepton number violating) mass term.

4Topology T-4 has two divergent and two finite diagrams. In [32] the diagram T-4-2-ii was used to

generate a coupling L∆L at one-loop. This diagram is classified as divergent in [8]. However, in [32] two

diagrams of this type appear, with the infinity cancelled between diagrams. This can not be justified in

terms of symmetry, instead it is due to the fact that lepton number is broken softly in the model of [32].
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L L

HH

T-1-i

L L

H

H

T-1-ii

L L

HH

T-1-iii

L L

HH

T-3

Figure 2. The four genuine d = 5 1-loop neutrino mass diagrams in the notation of [8].

While at tree-level the size of the representations as well as the hypercharge of the

new fields is fixed, at loop level there always exists a “tower” of possible models. This is

easily understood. Consider, for example, the diagram T-3. The outside leptons couple to

a scalar and a fermion. Since L is a SU(2) doublet, the representation of the scalar and

the fermion can be: 1⊗2, 2⊗3, 3⊗4, etc. Similarly at the four scalar vertex the smallest

possibility is 2 ⊗ 2, but larger representations can be inserted, with the only constraint

that the product of the two scalars can build a triplet. In the same way, the hypercharge

of the internal particles is fixed only up to an additive constant x, that runs in the loop.5

The minimal possibility to build a model for T-3 is then that the fermion is a νR = 1F0 ,

while the scalar is a doublet 2S1/2, i.e. the well-known scotogenic model. This is minimal in

the sense that it uses the smallest representations and the smallest value of the hypercharge

possible, i.e. x = 0. However, 2S1/2 can not be the SM Higgs, it must be an additional

inert doublet.

Note that in our sense, strictly speaking, the scotogenic model is not a “genuine”

model, since it requires an additional symmetry (in the minimal case a simple Z2) to avoid

the tree-level d = 5 type-I seesaw. This does not mean, however, that topology T-3 is

non-genuine: this topology has a finite loop integral and thus, no tree-level counter term is

needed in models that generate this topology. Rather, in order to avoid the type-I seesaw

contribution without the use of an additional symmetry, requires us to introduce fields with

larger hypercharges. The smallest possible choice is: 1F1 (together with its vector partner)

and two scalars 2S1/2 and 2S3/2.

5Of course, not all choices of x will lead to phenomenologically acceptable models.
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T1 T2 T3

Figure 3. Generating topologies, starting from the simplest topology, containing only 3-point

vertices with all 6 particles connected to the loop, T1. Subsequent topologies are found by removing

systematically particles attached to the loop and reconnecting them to ouside particles, as shown

for the examples T2 and T3. See text.

3 Classification

In this section, we will discuss the classification of the different d = 7 1-loop diagrams.

We first construct all possible 1-loop topologies with six external legs and then discard in

different steps those topologies that can not lead to genuine models. For the remaining

topologies we order all possible diagrams into different classes, depending on the minimum

size of the largest required SU(2)L representation appearing in the corresponding diagram.

We note in passing that we will not discuss colour in detail, because colour assignments

can be trivially added: all particles outside loops must be necessarily colour singlets, while

pairs of particles in loops can always be assigned colour in combinations X+X̄, for X = 1,

3, · · · , which then couple to “outside” colour singlet particles.

3.1 Topologies

We construct all possible 1-loop topologies with six external legs, discarding from the start

all self-energy corrections. This construction can be done in different ways and we used

two different procedures to assure that all possible topologies were found. In total there

are 48 possible topologies. The complete list is shown in the appendix.

We will briefly describe the methods we used to find the topologies. The first procedure

consists in taking the five d = 7 tree-level topologies and to generate loops in all possible

combinations, connecting either lines to lines or lines to vertices or vertices to vertices, using

only 3-point and 4-point vertices. From this list one has to discard in the end all duplicates.

The second procedure starts from the most simple realization of a 1-loop topology

adding six external lines to the loop using only 3-point vertices, as shown in figure 3. From

this topology, all other toplogies can be found by systematically removing lines attached

to the loop and adding them to an outside particle generating a new 3-point vertex, as

shown in the figure for the examples of T2, T3 etc. Once all possible topologies with only

3-point vertices are found, all remaining topologies can be generated from the earlier ones

by shrinking one line connecting two 3-point vertices to one new 4-point vertex, see the

example figure 4. Again, this procedure produces duplicates, which have to be identified

and discarded.

This second procedure provides a systematic construction of all possible topologies in

a more intuitive way than the first one described above. It allows to classify topologies

– 6 –
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T1 T10

Figure 4. Constructing topologies with 4-point vertices from existing topologies with only 3-point

vertices by “shrinking” one connecting line. Here shown for the example how T1 generates T10.

See also text.

T4 T33

Figure 5. Two example d = 7 topologies which always will be accompanied by a tree-level seesaw

d = 5 contributions to the neutrino mass matrix. For discussion see text.

according to the number of lines entering the loop, creating subgroups with the same

number of 4-leg vertices. This procedure is the one we use for ordering the complete list

of topologies, given in the appendix.

We then proceed to order topologies into different groups. We can discard immediately

the six topologies shown in figure 17, because none of them can lead to a renormalizable

model. The next step is to generate all possible diagrams and check if any field which

generates neutrino masses at lower order is required.

Two examples of topologies, which always necessarily will be accompanied by a tree-

level d = 5 seesaw, are shown in figure 5. These diagrams can be easily understood. Every

topology with at least two 3-leg vertices on two external lines will always generate a vertex

LHν̄R (or LHΣ̄ or H∆†H) and, thus a seesaw at tree-level, as in the example T4 figure 5

on the left. Topologies which contain one 3-leg vertex with two external lines isolated by a

4-leg vertex will always have a coupling of the type L∆L, as for example the topology T33

in figure 5, to the right. The 27 topologies, for which all diagrams can be excluded due to

this argument, are given in figure 14. The topologies T7, T22, T23 and T24 in this figure

are somewhat particular examples. For these a ∆ always has to exist. One might think to

bypass the ∆ and introduce a quintuplet instead. However, the coupling of two doublets

to a 5-plet is zero due to SU(2)L.

Before moving on a brief comment might be in order. Integrals for the diagrams in

topologies T4 and T33 are finite. One might therefore wonder, whether it is possible to

forbid one of the “ingredients” of the tree-level d = 5 seesaw, say one particular vertex, via

a discrete symmetry, only to generate it at 1-loop order. This was discussed at length for

d = 5 1-loop diagrams in [8]. At the d = 7 level, however, this will not be possible, since

H†H is a singlet under any discrete symmetry.

Next we turn to identifying topologies which generate diagrams reducible to 1-loop

d = 5 models. This is not as straightforward as the tree-level case. In particular, in this

– 7 –
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η η′

L L

Figure 6. The particular piece of diagram that generates the 1-loop d = 5 diagram T-3, see figure 2.

If this structure exists in any diagram, the vertex with the two scalars η, η′ and two Higgses also

always exist. This structure appears in many diagrams of the d = 7 topologies.

T10

L L

H†

H

H
H

T10-i

Figure 7. Topology T10 (left) and the only diagram derived from this topology, that can give a

genuine model (right).

class of topologies many diagrams lead to d = 5 tree-level models, while only the remaining

diagrams can lead to d = 5 1-loop models. However, when the topology is highly symmetric,

as for example in T1, one can always find a coupling between two internal fields and an

external field which bypasses the H†, giving one of the diagrams of figure 2. In addition,

any diagram containing the structure given in figure 6 can be reduced to the well-known

diagram T-3 in figure 2. We list all topologies excluded due to these arguments in figure 15.

Then, there are diagrams which always contain the fields 4S3/2 and 3F1 , responsible of

generating neutrino mass at tree-level d = 7 [30]. Examples are diagrams of the topologies

T25, T29 and T35 (figure 16), which are excluded as genuine ones due to this reason.

Finally, in the remaining 8 topologies that are not completely excluded by one of the

above arguments, many but not all the diagrams do not lead to genuine models. For

instance, from the 10 different diagrams that one can generate from topology T10 (figure 7

left), only one is not reducible to 1-loop d = 5 (figure 7 right).

In summary, from the initial 48 topologies only 8 have at least one genuine 1-loop d = 7

diagram. The excluded topologies are listed in the appendix in figures 14–17. The next

step is to classify the surviving topologies in terms of the minimal SU(2)L representation

needed to realize a genuine model.

3.2 Diagrams: minimal SU(2)L representations

In all d = 7 diagrams, in order to avoid neutrino masses at lower order, a minimal size for the

SU(2)L representations of the model is required. We order the possible models according to

the largest representation present in a given model. The “smallest” or minimal model that

one can construct is then a model in which no representation larger than SU(2)L triplets is

needed. The next smallest possibility is models with quadruplets. Here, one can distinguish

– 8 –
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η

χ

Ψ
H†

L

H

η1

η2 H

φ

H†

H

H

Figure 8. Structures that appear in topologies T12 (left) and T13 (right) which require at least a

quadruplet and a singlet running inside the loop to avoid lower order contributions. For discussion

see text.

three different subgroups: (i) diagrams in which one quadruplet is needed inside the loop;

(ii) diagrams in which one quadruplet appears outside the loop and internal particles need

not be larger than triplets; and (iii) models in which at least two quadruplets are needed.

We will discuss these three possibilities in reverse order and then proceed to briefly discuss

the triplet diagram.

For external fields, finding the minimal representation is straightforward. A recurrent

example in most of the diagrams of the appendix is that of the vertex HH†-scalar. Since

2 ⊗ 2 = 3 + 1, the scalar could be a trivial singlet or the triplet φ ≡ 3S0 . The former case

is directly reducible to a d = 5 diagram, the latter is the one we are interested in. The

same principle applies to the diagrams given in figure 20, case (iii), for which the largest

necessary representation is a quadruplet. In order to avoid lower order contributions, one

needs the quadruplet 4S1/2 (4F−1/2) outside the loop. Moreover, one should be able to

distinguish between these quadruplets and a Higgs or a lepton doublet. For this reason,

the external quadruplet must couple to a singlet and another quadruplet running inside

the loop. All the diagrams of this type are depicted in figure 20 and they always contain

two quadruplets, one outside the loop and another inside.

As we are dealing with the operator LLHHHH†, the maximum hypercharges of an

external quadruplet is 3/2, i.e. S. These diagrams corresponds to group (ii) defined above.

All the diagrams given in figure 19 contains this scalar entering the loop and they belong

to the same topology T16 (figure 13). Note that the hypercharge 3/2 of S prevents the

possibility to reduce these models to d = 5 1-loop.

The rest of the diagrams do not contain a external quadruplet. In the minimal case,

all the diagrams given in figure 18 just need one quadruplet running in the loop. Diagrams

generated from the topologies T2, T12 and T13 with a triplet entering the loop have all

similar structures to those given in figure 8. The minimum representations for the fields

(χ, η) or (η1, η2) in figure 8, are then a singlet and a quadruplet, in oder to prevent a

coupling of these fields with a lepton doublet L or the Higgs H, respectively.

The remaining diagram T10-i of figure 18 is a rather singular case of this group (i), with

only one internal quadruplet. Given the isolated H† and the upper asymmetric structure

with three Higgses, the representation between the Higgs vertices needs to be (at least) a

quadruplet, otherwise a d = 5 1-loop contribution is possible.

After giving all the diagrams that can be construct with quadruplets as the highest

representation (figures 18–20), the last case depicted in figure 9 shows the only genuine

– 9 –
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T11
L

H
Ψ

HH

H†

L

T11-i

Figure 9. Topology T11 to the left: the only topology for which a genuine model with no rep-

resentations larger than triplets exist. The only genuine diagram for this topology is shown on

the right.

diagram that can be constructed with no representation bigger than triplet. Despite its

similarity to the structure given in figure 8 (left), the 4-leg vertex prevents lower order neu-

trino masses already with triplets. The corresponding diagram figure 9 (right) with a 4-legs

vertex followed by a triplet Ψ cannot be bridged to construct a 1-loop d = 5 contribution

given the relation between the hypercharges of the fields running inside then loop.

To summarize, from the 8 genuine topologies, one can generate 23 diagrams. Among

them, only one can be realized with no representation larger than triplets as the maximum

SU(2)L representation, figure 9. The other 22 diagrams generated from the 7 topologies

given in figure 13 can generate models with representations up to quadruplets. This whole

set can be divided depending if the diagrams require one quadruplet running in the loop

(figure 18), outside the loop (figure 19) or two quadruplets both inside and outside the

loop (figure 20). Of course, models with larger representations can be constructed and we

will give one example in the next subsection.

3.3 Example models

The complete list of diagrams, from which genuine d = 7 1-loop models can be built

is given in the appendix. Here, we will briefly discuss three example models, which are

among the most simple models one can built from these diagrams. These models are: (i)

The simplest d = 7 model, which requires no representation larger than a triplet; (ii) one

example model with an external quadruplet S; and (iii) an example model with an SU(2)L
quintuplet. The latter serves to show, how models with larger representations can easily

be constructed from our list of diagrams.

3.3.1 Triplet model

As discussed above, there is only one possible diagram that has a triplet as the largest

SU(2)L representation, see figure 9. The model requires the fermionic triplet Ψ = 3F1 , that

also appears in the BNT model. A priori, for the particles inside the loop hypercharge is

not fixed. However, not all choices of hypercharge will lead to genuine models, since lower

order contributions might appear. If we use only doublets and triplets inside the loop, the

– 10 –
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η2 η1

×
χ1

χ1
η3

L

H
×ΨΨ

HH

H†

L

Figure 10. The most minimal model that one can construct at 1-loop d = 7 order with no SU(2)L
representations larger than triplet. The model is generated from the diagram T11-i in figure 9.

smallest hypercharge assignments that lead to a genuine model are:

Ψ =

Ψ++

Ψ+

Ψ0

 ∼ 3F1 η1 =

(
η++

1

η+
1

)
∼ 2S3/2 η2 =

(
η+++

2

η++
2

)
∼ 2S5/2

η3 =

η++++
3

η+++
3

η++
3

 ∼ 3S3 χ1 =

(
χ+++

1

χ++
1

)
∼ 2F5/2.

The model generates neutrino masses via the diagram depicted in figure 10. η1 has the

smallest hypercharge of the particles in the loop. For colorless particles it is not possible

to find a smaller hypercharge assignment that leads to a genuine model. For example,

choosing η1 = 2S1/2 instead would result in a model, which also has the diagram T-3 at

d = 5 level.

One interesting aspect of this model is that the scalar triplet inside the loop has a

component which carries 4 units of electric charge.

3.3.2 Quadruplet model

While for triplets as the maximal representation there is only one diagram, for quadruplets

three distinct groups of model exist, as discussed above. We choose an example based on an

external quadruplet S = 4S3/2. The example model we choose is based on diagram T16-ii.

As in the triplet case, hypercharge and SU(2)L representation are not uniquely fixed.

The minimal model, again in the sense of using the smallest possible hypercharge assign-

ment for colourless internal fields, has the following particle content:

S =


S+++

S++

S+

S0

 ∼ 4S3/2 χ1 =

(
χ++

1

χ+
1

)
∼ 2F3/2 χ2 =

χ++++
2

χ+++
2

χ++
2

 ∼ 3F3

η1 = η++
1 ∼ 1S2 η2 =

(
η+++

2

η++
2

)
∼ 2S5/2 .
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×
χ1
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L

H† S

L

H

H

H

Figure 11. Example of a d = 7 1-loop model with an external quadruplet S = 4S
3/2, generated

from the diagram T16-ii in figure 19. This model contains only doublet and triplet representations

inside the loop, see text.

This model generates neutrino masses via the diagram of figure 11. In this example,

lower order contributions can be avoided due to the hypercharge of S. A model with

smaller hypercharges, for example η1 chosen to be η1 = 1S1 , would again not be genuine,

since it would necessarily have a d = 5 1-loop contribution, i.e. the classical Zee model [16],

see diagram T-1-ii in figure 2. Note that, while the triplet model contains a scalar with 4

units of electric charge, in the quadruplet model it is an internal fermion that has such a

large electric charge.

3.3.3 Quintuplet model

Finally, our last example is a model based on diagram T13-i in figure 18. It contains the

field φ = 3S0 and a quintuplet in the loop. The diagram for the generation of the neutrino

masses is shown in figure 12. The minimal particle content containing a 5-plet is given by:

φ =

φ+

φ0

φ−

 ∼ 3F0 Ψ =

Ψ++

Ψ+

Ψ0

 ∼ 3F1 χ1 =


χ+++

1

χ++
1

χ+
1

χ0
1

 ∼ 4F3/2

η1 =

(
η++

1

η+
1

)
∼ 2S3/2 η2 =


η+++

2

η++
2

η+
2

η0
2

η−2

 ∼ 5S1 .

The maximum representation in this model is a quintuplet, η2. Since it couples to the

Higgs, φ and η1, η1 could be either a 2, 4, 6 or a 8. However, only for the case of η1 being

a doublet, a genuine model results. This is because, once the coupling η1Hη
†
2 is allowed,

one can construct again a d = 5 1-loop diagram with the particle content of the model.

– 12 –
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×
Ψ

Ψ

η1

η2χ1

L

H

L

H

φ

H†

H

H

Figure 12. Example of one of the most minimal models that one can construct at d = 7 1-loop

order with SU(2)L representations up to 5-plets generated from the diagram T13-i in figure 18.

It is worth noting that from three example models we have discussed, the quintuplet

model is the only one, in which the representations in the loop contain a neutral component.

For this model, one can thus follow the idea of the scotogenic model [15]: add a discrete

Z2 symmetry to the model, under which the internal particles are odd, and the lightest

neutral particle can be a cold dark matter candidate.

4 Summary

We have discussed neutrino masses at 1-loop d = 7 order. We have identified all possible

topologies that can lead to genuine models, i.e. models that are not accompanied by either

a d = 5 or d = 7 tree-level mass term nor by a d = 5 1-loop neutrino mass. We have found

that only 8 out of a total of 48 topologies can lead to genuine models.

We then ordered the remaining, possibly genuine, diagrams into different groups, de-

pending on the minimal field content necessary to construct a model. There is only one

possible diagram for which the largest necessary representation is a triplet. The remaining

7 topologies yield 22 diagrams, with the largest representation being at least a quadruplet.

We then briefly discussed three example models, starting from the triplet model, with one

additional example for a quadruplet and one for a quintuplet each.

To avoid lower order neutrino masses, the “genuine” models we discussed always have

to introduce five new multiplets, usually with quite a large hypercharge for at least one

of them. Thus, these d = 7 models are necessarily more complicated constructions than

the classical seesaw. From a theoretical point of view this might make these models less

attractive. However, in particular due to the large electrical charges in these models, one

can expect interesting signatures for them at colliders. We reiterate that the d = 7 1-loop

contribution can only be dominant, if at least some of the new particles have masses below

roughly 2 TeV.
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T2 T3 T10 T11

T12 T13 T14 T16

Figure 13. Topologies that can lead to a genuine d = 7 1-loop neutrino mass model. T11 is the

only topology for which the largest representation can be as small as a SU(2)L triplet. For all other

topologies at least one quadruplet must appear in the diagram for the model to be genuine. The

quadruplet diagrams based on those topologies are shown in figures 18, 19 and 20. For the triplet

model see figure 10.
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A Topologies and genuine diagrams

In this appendix we present the list of all d = 7 1-loop topologies, classified into genuine

and non-genuine topologies, as discussed in the main text. We also give the complete list of

diagrams that can lead to “genuine” d = 7 neutrino mass models with SU(2)L quadruplet

representations.

A.1 Topologies

Figure 13 shows the 8 topologies that can lead to genuine d = 7 1-loop models. We

stress again that not all diagrams, derived from these topologies, are necessarily genuine,

as discussed in the main text. Note that only T11 can give a model in which the largest

representation can be as small as a SU(2)L triplet. All other 7 topologies require at least

one quadruplet for genuine models.

In figure 14 we list all topologies for which all diagrams are excluded, since they

contain either a singlet fermion νR (1F0 ) or a triplet scalar ∆ (3S−1) or a triplet fermion Σ

(3F0 ). All diagrams from these topologies thus will also generate a tree-level d = 5 seesaw

contribution to the neutrino mass matrix.
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Figure 14. Topologies that necessarily lead to a d = 5 tree level neutrino mass, see text.
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T31 T37

Figure 15. Topologies that lead to a d = 5 1-loop neutrino mass. All diagrams generated from

the topologies in this class, not already excluded because they generate a d = 5 tree-level mass,

include the particle content necessary to generate neutrino mass through one of the four genuine

d = 5 1-loop diagrams, see figure 2. Note that T15 is an exceptional case, since it has diagrams for

all three possibilities: tree-level d = 5, 1-loop d = 5 and tree-level d = 7.

T25 T29 T35

Figure 16. Topologies, which lead to a d = 7 tree level neutrino mass. For each of these topologies

one can construct diagrams, which have a d = 5 tree-level mass. All remaining diagrams contain

the scalar S (4S
3/2) along with the fermion Ψ (3F

1 ) (figure 1) [30].

In figure 15 we list the topologies for which many but not all diagrams are excluded

by a d = 5 tree-level seesaw. For these topologies all remaining diagrams are excluded

because a 1-loop d = 5 contribution to the neutrino mass necessarily exists.

In figure 16 we list topologies, which lead to a d = 7 tree level neutrino mass. For

each of these topologies one can construct diagrams, which have a d = 5 tree-level mass.

All remaining diagrams, contain the scalar S (4S3/2) along with the fermion Ψ (3F1 ) and

thus generate the d = 7 tree-level BNT model [30]. We note in passing that one can, in

principle, use these diagrams to radiatively generate one of the vertices in the BNT model.

This is very similar to the discussion for the radiative generation of a seesaw coupling given

in [8] at d = 5 level.

In figure 17 for completeness we show the topologies which are excluded, since they

can never lead to a renormalizable model.

A.2 Genuine diagrams

In this section we list diagrams with quadruplets. All diagrams are given in figures 18, 19

and 20. We have divided these diagrams into three groups, depending on whether there is

a quadruplet in the loop (figure 18), the scalar S on the outside of the loop (figure 19) or

models with at least two different quadruplets (figure 20).
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T47 T48

Figure 17. Topologies discarded because they lead to non-renormalizable operators.

H†L

Ψ

HL

HH

T2-i

H†L

Ψ

HL

HH

T2-ii

L L

H†

H

H
H

T10-i
L

Ψ

H

H†

LH

H

T12-i

L

H

L

H

φ

H†

H

H

T13-i

Figure 18. Diagrams that can lead to a genuine d = 7 1-loop neutrino mass for which the largest

representations of SU(2)L is at least a quadruplet. This group of diagrams require the quadruplet

to be one of the particles inside the loop to avoid lower order contributions.

L

H† S

L

H

H

H

T16-i
L

H† S

L

H

H

H

T16-ii
L

L
S

H†

H

H

H

T16-iii

Figure 19. Diagrams that lead to a genuine d = 7 1-loop neutrino mass for which the largest

representations of SU(2)L is at least a quadruplet. All these diagrams contain S = 4S
3/2. The

hypercharge of the scalar S ensures the absence of a d = 5 1-loop neutrino mass.
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H
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H

T3-ii
L
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H
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L
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H†
H

T3-iv
H

L

H
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H†
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H
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H
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T3-viii
L

H

H

4−12 Ψ

H

L

H†

T3-ix
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L

φ

H†
H

L

H
H T14-i

4−12
H

Ψ

H†
L

L

H
H T14-ii

L

H
41

2

L

H†

H

H

T16-iv
L

H
41

2

L

H†

H

H

T16-v
L

L
41

2

H

H†

H

H

T16-vi

Figure 20. All remaining diagrams that lead to a genuine d = 7 1-loop neutrino mass for which the

maximum representations of SU(2)L is at least a quadruplet. In these diagrams, two quadruplets

are needed. Along with the external fermion or scalar quadruplet, a genuine models needs an

internal quadruplet to allow to distinguish between a 4S
1/2 (4F

−1/2) and a Higgs (L).
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