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We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay (0νββ).
As demonstrated previously, the effect of the color mismatch arising from loops with gluons linking the
quarks from different color-singlet currents participating in the effective operators has a dramatic impact on
the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from
heavy particle exchange, i.e. the so-called short-range mechanism of 0νββ decay. All high-scale models
(HSM) in this class match at some scale around a ∼ few TeV with the corresponding effective theory,
containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from
more than one of the basic operators and we calculate limits on these models using the latest experimental
data. We also show with one nontrivial example, how to derive limits on more complicated models, in
which many different Feynman diagrams contribute to 0νββ decay, using our general method.
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I. INTRODUCTION

Lepton number violation (LNV) appears in many exten-
sions of the Standard Model (SM). If LNV exists, it could
be the explanation for the smallness of the observed
neutrino masses and maybe even the baryon asymmetry
of the universe [1]. Neutrinoless double beta decay (0νββ)
is widely credited as the most promising probe for LNV
from the view point of experimental observability.
Consequently, 0νββ-decay has been studied in great detail,
both from theoretical and experimental points of view.1

A number of experiments are currently searching for
0νββ-decay [6–10] with the negative results setting lower
bounds on the 0νββ-half-life T0ν

1=2. Currently the best
bounds are

KamLAND-Zen ½9�∶ T0ν
1=2ð136XeÞ
¼ 1.07 × 1026 ysð90% C:L:Þ; ð1Þ

GERDA Phase-II ½10�∶ T0ν
1=2ð76GeÞ
¼ 5.2 × 1025 ysð90%C:L:Þ: ð2Þ

Sensitivities in excess of T0ν
1=2 ≳ 1027 ys in experiments

using 136Xe [11] and 76Ge [12,13] are expected in the future.

Contributions to 0νββ-decay can be classified as either
long-range (LRM) [14] or short-range mechanisms (SRM)
[15], depending on whether all of the virtually exchanged
particles are heavy or not, see Fig. 1. For the short-range
mechanisms, SRM, the experimental limits imply typical
masses of heavy intermediate particles and an LNV scale
ΛLNV in the ballpark of (a few) TeV. Therefore, the LHC
could possibly provide a cross-check whether or not these
contributions can be dominant in 0νββ-decay [16–20].
Naturally, for a realistic comparison of the sensitivities of

the 0νββ-decay experiments with the LHC ones the
theoretical calculations must be made as reliable as
possible, which is particularly demanding for 0νββ-decay.
One well-known source of difficulties in this case are
uncertainties in the Nuclear Matrix Elements (NME),

(a) (b)

FIG. 1. Short-range mechanism (SRM), to the left, and long-
range mechanism (LRM) to the right. The grey blobs indicate
effective vertices originating from heavy particle-exchange.
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1For reviews of particle physics aspects of 0νββ see for

instance Refs. [2,3] and for recent calculations of nuclear matrix
elements Refs. [4,5].

PHYSICAL REVIEW D 96, 015010 (2017)

2470-0010=2017=96(1)=015010(12) 015010-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.015010
https://doi.org/10.1103/PhysRevD.96.015010
https://doi.org/10.1103/PhysRevD.96.015010
https://doi.org/10.1103/PhysRevD.96.015010


which spread by a factor of typically ∼2 comparing
different calculations. Improving the predictions for
0νββ-NMEs is a serious challenge for nuclear structure
theory, which is going to take time and significant efforts.
On the other hand, recently it has been pointed out that one
important effect has so far been missing in the theoretical
treatment of 0νββ-decay [21,22]: QCD corrections. This
effect, being perturbative, is much better controllable
theoretically than the essentially nonperturbative (in quan-
tum field theory sense) physics involved in the NME
calculations. As explained in Ref. [22] gluon exchange
diagrams can lead to the so called “color-mismatch” in the
products of the color-singlet quark currents giving rise to an
appreciable mixing between different 0νββ-effective oper-
ators. The vastly differing numerical values of NMEs for
different operators then result in dramatic changes of the
limits on the Wilson coefficients of some particular
operators. This feature is pertinent to the SRMs of 0νββ-
decay. It has been recently demonstrated in Ref. [23] that
the color-mismatch effect is absent in the case of the LRMs
of 0νββ-decay and, therefore, for this class of mechanisms
the QCD corrections are not so crucial.
For such a fairly low-energy process as 0νββ-decay an

effective operator description is adequate for calculating the
decay rate. This rather straightforward observation forms
the framework of the original papers [14,15] where the
basis of the effective 0νββ-decay d ¼ 9 operators was
introduced and generic formulas for the 0νββ-decay half-
life were derived. More recently this approach has been
developed in Refs. [22,23] where we derived the QCD-
corrected 0νββ-decay half-life formulas for both SRM and
LRM.2 From the more fundamental high-energy point of
view, however, contributions to 0νββ-decay originate from
some renormalizable LNV extension of the SM, i.e. high-
scale models (HSM), whose parameters are the couplings
and masses of experimentally yet unknown particles.
A list of all possible HSMs representing UV completions

of the above-mentioned 0νββ-decay d ¼ 9 operators was
given in Ref. [26] and from that paper, in principle, all the
HSMs contributing to 0νββ-decay via the short-range
mechanism can be found. The purpose of our present paper
is to provide a bridge between these two descriptions—in
terms of the effective operators and the HSMs—taking into
account the effect of the above-mentionedQCD corrections.
Upper limits derived on theWilson coefficients of the 0νββ-
decay effective operators (low energy approach) [22] can be
converted into lower limits on the mass scales of the HSMs
listed in Ref. [26] and we provide tables of these limits,
using updated experimental lower bounds on the 0νββ-
decay half-life, for all “elementary” HSMs (see Sec. III).

While these “translation rules” can be applied in a rather
straightforward manner to any particular HSM, for which
only one Feynman diagram contributes significantly, there
are many example models in the literature where this is not
the case. In the presence of more than one significant
diagram a careful examination of their contributions to
different operators is required for arriving at the correct
answer. We will discuss one particular example—R-parity
violating supersymmetry—in some detail, to demonstrate
the usefulness of our approach.
This paper is organized as follows. In Sec. II we start by

recalling the definitions for the QCD corrected half-life
formula for 0νββ-decay. This section summarizes the
results of Ref. [22]. We then derive limits on “elementary”
HSMs contributing to the short-range 0νββ-decay mecha-
nism in Sec. III. In Sec. IV we discuss how to derive limits
in our approach on more complicated HSMs. As already
mentioned, we choose the well-known example of R-parity
violating SUSY. We conclude with a discussion of our
results in Sec. V. Some more technical aspects of the
calculation are delegated to an Appendix.

II. QCD RUNNING OF SHORT-RANGE
MECHANISMS

The contribution of a HSM to 0νββ-decay via heavy
particle exchange we call the short-range mechanism
(SRM), already mentioned in the Introduction. After
integrating out the heavy degrees of freedom of a mass
∼MI at an energy-scale μ < MI , all the HSMs of the SRM
category can be represented by the effective Lagrangian
[15,22]

L0νββ
eff ¼ G2

F

2mp

X
i;XY

CXY
i ðμÞ ·OXY

i ðμÞ; ð3Þ

with the complete set of dimension-9 0νββ-operators

OXY
1 ¼ 4ðūPXdÞðūPYdÞj; ð4Þ

OXX
2 ¼ 4ðūσμνPXdÞðūσμνPXdÞj; ð5Þ

OXY
3 ¼ 4ðūγμPXdÞðūγμPYdÞj; ð6Þ

OXY
4 ¼ 4ðūγμPXdÞðūσμνPYdÞjν; ð7Þ

OXY
5 ¼ 4ðūγμPXdÞðūPYdÞjμ; ð8Þ

where X, Y ¼ L, R and the leptonic currents are

j ¼ ēð1� γ5Þec; jμ ¼ ēγμγ5ec: ð9Þ

The Wilson coefficients CXY
i can be expressed in terms of

the parameters of a particular HSM at a scale Λ ∼MI ,
called “matching scale.” Note that some of CiðΛÞ may

2In Ref. [24] the QCD corrections were taken into account to
the pion-exchange mechanism [25] of 0νββ-decay. However, the
tensor operator contribution, suppressed in this mechanism, were
erroneously treated in [24] to be proportional to the scalar one
after incorrectly neglecting the Fiertz generated octet operators.

ARBELÁEZ, GONZÁLEZ, KOVALENKO, and HIRSCH PHYSICAL REVIEW D 96, 015010 (2017)

015010-2



vanish. In order to make contact with 0νββ-decay one
needs to estimate Ci at a scale μ0 close to the typical 0νββ-
energy scale. The QCD corrections, such as shown in
Fig. 2, lead to running of the coefficients between the
matching Λ and μ0 scales.
While the QCD-running is only logarithmic, it mixes

different operators (or equivalently Wilson coefficients)
from the list (4)–(8). Because of the vast difference of the
NMEs of some operators, this effect results in a dramatic
impact on the prediction of some HSM for 0νββ-
decay [22].
On the way from the quark-level effective Lagrangian (3)

to the NMEs one faces the problem of hadronization,
namely, embedding the quark fields into effective hadronic
ones. The underlying 4 quark operators ðūdÞðūdÞ in
Eqs. (4)–(8) can be hadronizated in various ways: into
two nucleons or in one nucleon+one pion, or into two pions
and so on. All these terms must be present in the effective
low-energy hadronic Lagrangian. It is one of the big
problems in 0νββ-decay theory that we do not know the
corresponding effective couplings, which depend on the as
yet unknown hadronic wave functions. In such a situation it
is a common lore, which we also adopt in our approach, to
study the terms of the complete hadronic Lagrangian
separately, as if there were only one way of hadronization
and other terms were absent. We study the hadronization
into two nucleons. References [25,27]3 focus on the
nucleon-pion and pion-pion terms. However one should
realize that they are complementary and separately do not
reproduce the whole picture. As is known, in the nuclear
media the pion terms/mechanism gain certain enhancement
factors related, in particular, with its long-range nature and
the presence of the nuclear short-range correlation. But it is
currently unknown if the hadronization into pions is sup-
pressed in comparison with nucleons or not. If yes, the pion
mechanism might give less stringent constraints than what
has been claimed in the literature so far. If not, one has to
note that the pion-nucleon and pion-pion mechanisms are
practically blind to the tensor operators appearing in many
high-scale models. On the other hand the nucleon-nucleon
mechanism is sensitive to all the Lorentz structures.

Importantly, the NME of the tensor operators are about
two orders of magnitude larger than, for example, the
(pseudo-)scalar ones.
In summary of this discussion, in our analysis we

deliberately neglect the pion mode of hadronization assum-
ing it to be, for some reasons, suppressed in comparison
with the nucleon mode. We are aware that this might not be
the case, but this is also true for the studies based on the
pion mode. We believe it is still an open—and crucial—
question for 0νββ-theory of how to correctly treat the
hadronization of quark operators.
The 0νββ-decay half-life formula, taking into account

the leading order QCD-running [22], reads

½T0νββ
1=2 �−1 ¼ G1

����
X3
i¼1

βXYi ðμ0;ΛÞCXY
i ðΛÞ

����
2

þG2

����
X5
i¼4

βXYi ðμ0;ΛÞCXY
i ðΛÞ

����
2

ð10Þ

Here, G1;2 are phase space factors [15,28]. The summation
over the different chiralities X, Y ¼ L, R is implied. The
parameters βXYi incorporate the QCD-running and the
NMEs of the operators in Eqs. (4)–(8). Their explicit form
is given in Appendix A. We show the values of these
coefficients in Table I calculated with the NMEs from
Ref. [2].4 However, they can be easily recalculated for any
other set of NMEs with Eqs. (A1)–(A11).
It is important to note that the Wilson coefficients CiðΛÞ,

entering in Eq. (10), are linked to the matching scale Λ,
where they are calculable in terms of the HSM parameters,
such as couplings and intermediate particle masses.
In Ref. [22] we used the 0νββ-decay half-life for-

mula (10) in order to extract “individual” upper limits
on the Wilson coefficients CXY

i from the existing exper-
imental bounds on T0νββ

1=2 . We employed the conventional
hypothesis that a single term dominates in Eq. (10). This
method disregards effects of a possible simultaneous
presence of several nonzero terms, which may partially

(a) (b) (c)

FIG. 2. One-loop QCD corrections to the short range mechanisms of 0νββ decay in the effective theory: the vertex renormalization (a)
and the “color-mismatch” (b), (c) diagrams.

3Ref. [27] ignores tensor × tensor or/and color ð8 × 8Þ1
operators, crucial for some high-scale models.

4To our best knowledge there is no complete set of the NMEs
published in the literature for all the operators (4)–(8) except for
Ref. [2], which used the model of Ref. [29].
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cancel each other or give rise to a significant enhancement.
These effects are discussed in the next section.

III. LIMITS ON SHORT-RANGE ELEMENTARY
HIGH-SCALE MODELS

Two tree-level topologies contributing to the 0νββ
decay amplitude were identified in Ref. [26], see Fig. 3.
Here, the outer lines of the diagrams represent all
possible permutations of the six fermions ū ū ddē ē,
which make up the 0νββ decay operator. Considering
GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY invariant vertices in
these diagrams one may derive a complete list of
the GSM-assignments for the intermediate particles
ðScalar;Fermion;ScalarÞ¼ ðS;Ψ;S0Þ and ðthree ScalarsÞ ¼
ðS; S0; S″Þ in the T-I and T-II topology diagrams, respec-
tively. This was done in Ref. [26]. Each case in this list we
call “elementary” HSM (eHSM). We reproduce the original
list of Ref. [26] in Tables VI, VII and IX where, for
convenience of our analysis, we collected the eHSMs in
groups enumerated by #I. Any short-range HSM can be
represented in the form of a linear combination of several
eHSMs. The HSMs considered in the literature (for a recent
review cf. Ref. [2]) are mainly of this kind with the
parameters (couplings, masses) of the involved eHSMs
related between each other by symmetry or other argu-
ments. We will discuss one example of such nonelementary
HSM—Rp SUSY—in the next section and here first focus
on the eHSMs.
In the case of the short-range mechanism all the HSMs in

the low-energy limit are reducible to the effective

Lagrangian (3). By definition each eHSM generates, after
integrating out heavy particles, a single effective operator. It
is straightforward, although tedious, to check that all the
eHSMs from each group #I in Tables VI, VII and IX lead to
the same effective operator OI. Projection of OI on the
general operator basis Oi in Eqs. (4)–(8) via Lorentz and
color Fierz transformations (see Appendix B) gives rise to a
linear combination of only two basis operators

OI ¼ xIiOi þ yIjOj ð11Þ

with numerical coefficients xI , yI algebraically calculable
for any particular eHSM [26]. Note that no summation over
the repeated indices i; j is implied in Eq. (11). All of the
possible operator pairs with the corresponding coefficients
are shown in Tables II and III. Some eHSM lead to only one
of the basis operators, these are listed in Table IV. The
values of the coefficients xI , yI given in these Tables are
useful as an additional identifier of the eHSMs as well as
for recalculation of the experimental limits on the param-
eters of the eHSMs, also given in these Tables, with the
NMEs and the experimental 0νββ-decay half-life bounds
different from those we used here.
We derived these limits in the following way. The

effective Lagrangian for any #I eHSM at the matching
scale Λ can be expressed, taking into account (11), as

LI ¼
G2

F

2mp
CIðΛÞ ·OIðΛÞ

¼ G2
F

2mp
CIðΛÞ · ðxIiOiðΛÞ þ yIjOjðΛÞÞ: ð12Þ

The half-life formula (10), used to constrain a concrete
eHSM, is reduced to

T−1
1=2 ¼ GKI

jCIðΛÞj2jβiðμ0;ΛÞxIi þ βjðμ0;ΛÞyIjj2: ð13Þ

Here KI ¼ 1 or 2 for i; j ∈ f1; 2; 3g or for i; j ∈ f4; 5g,
respectively.
Using the current experimental 0νββ-decay half-life

lower bounds (1), (2) we derive from Eq. (13) upper limits
on the Wilson coefficients CIðΛ ¼ 1 TeVÞ ≤ Cexp

I . These

TABLE I. The coefficients βi ≡ βiðμ0;ΛÞ incorporating NMEs and entering the QCD corrected half-life formula (10). The results are
shown for the QCD running between the scales Λ ¼ 1 TeV and μ0 ¼ 1 GeV. See Appendix A.

Isotope Isotope
Coefficients 76Ge 136Xe Coefficients 76Ge 136Xe

βXX1 6.1 × 103 3.1 × 103 βXX4 ð−5.6þ 0.2iÞ × 102 ð−2.9þ 0.1iÞ × 102

βLR1 −2.5 × 102 −1.3 × 102 βLR4 1.2 × 102 6.0 × 101

βXX2 −4.4 × 102 −2.3 × 102 βXX5 ð0.9 − 1.3iÞ × 102 ð4.5 − 6.6iÞ × 101

βXX3 1.5 × 102 7.5 × 101 βLR5 7.7 × 101 3.9 × 101

βLR3 1.1 × 102 5.7 × 101

FIG. 3. Tree-level topologies contributing to the short-range
mechanism of 0νββ-decay. To the left T-I, boson-fermion-boson
exchange; to the right T-II, triple-boson diagrams. External lines
stand symbolically for any permutation of ū ū ddē ē.
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limits are shown in Tables II, III and IV. For a more direct
comparison of the 0νββ-decay limits with the sensitivity of
an accelerator experiment, such as the LHC, it is instructive
to convert these limits into limits on the scale MI of the
masses of the intermediate heavy particles mediating
the contribution of #I eHSMs to 0νββ-decay. Denoting
the dimensionless couplings in the T-I diagram from Fig. 3
with λ1;2;3;4 and letting all the intermediate particle masses
be of the order of the same scale MI we can give an
estimation

G2
F

2mp
CIðΛÞ ¼

λ1λ2λ3λ4
M5

I

ð14Þ

for the overall coefficient in Eq. (12). Then we find lower
limits for the typical mass scale at which a particular eHSM
contributes to the short-range mechanism:

MI ≥ λ4=5eff

�
2mp

Cexp
I G2

F

�
1=5

¼ λ4=5eff M̄
exp
I ; ð15Þ

TABLE III. Continuation of Table II. Experimental limits on the Wilson Coefficients CIðΛ ¼ 1 TeVÞ ≤ Cexp
I of these operators and

their characteristic scales MI ≥ λ4=5eff · M̄exp
I [for the definitions see Eqs. (12), (15)] are derived from the current 0νββ bounds (1), (2).

Effective operator
decomposition

Cexp
I M̄exp

I TeV
eHSM #I α, β 76Ge 136Xe 76Ge 136Xe

OI ¼ xOXX
4 þ yOXX

5

11 − 1
16i, −

5
48

6.9 × 10−8 3.5 × 10−8 2.9 3.3
12 − 1

32i, −
1
32

1.2 × 10−7 6.0 × 10−8 2.6 3.0
13 1

32i, −
1
32

7.6 × 10−8 3.9 × 10−8 2.8 3.2
14 1

48i,
7
48

1.1 × 10−7 5.5 × 10−8 2.7 3.0
15 − 1

32i, −
3
32

1.6 × 10−7 8.1 × 10−8 2.5 2.8
16 1

24i, −
1
24

5.7 × 10−8 2.9 × 10−8 3.0 3.4

OI ¼ xOLR;RL
4 þ yOLR;RL

5

17 1
16i, −

5
48

1.5 × 10−7 7.8 × 10−8 2.5 2.8
18 1

32i, −
1
32

3.8 × 10−7 1.9 × 10−7 2.1 2.4
19 − 1

48i,
7
48

1.4 × 10−7 7.4 × 10−8 2.5 2.9
20 1

32i, −
3
32

2.0 × 10−7 1.1 × 10−7 2.3 2.7
21 − 1

32i, −
1
32

3.7 × 10−7 1.9 × 10−7 2.1 2.4
22 − 1

24i, −
1
24

2.8 × 10−7 1.4 × 10−7 2.2 2.5

TABLE II. Decomposition in the basis operators (4)–(8) of the effective operators OI representing low-energy limits of the eHSMs of
the group # I specified in Tables VI–IX. Experimental limits on the Wilson Coefficients CIðΛ ¼ 1 TeVÞ ≤ Cexp

I of these operators and

their characteristic scales MI ≥ λ4=5eff · M̄exp
I [for the definitions see Eqs. (12), (15)] are derived from the current 0νββ bounds (1), (2).

Effective operator
decomposition

Cexp
I M̄exp

I TeV
eHSM #I x, y 76Ge 136Xe 76Ge 136Xe

OI ¼ xOXX
1 þ yOXX

2

1 − 5
24
, − 1

32
1.4 × 10−9 6.9 × 10−10 6.3 7.3

2 1
32
, 1
128

9.2 × 10−9 4.6 × 10−9 4.3 5.0
3 − 7

48
, − 1

192
2.0 × 10−9 9.7 × 10−10 5.9 6.8

4 1
32
, − 1

128
8.9 × 10−9 4.4 × 10−9 4.4 5.0

5 1
24
, − 1

96
6.7 × 10−9 3.3 × 10−9 4.6 5.3

6 3
32
, 1
128

3.0 × 10−9 1.5 × 10−9 5.4 6.2

OI ¼ xOLR;RL
1 þ yOLR;RL

3

7 − 1
12
, − 1

8
2.4 × 10−7 1.2 × 10−7 2.3 2.6

8 − 1
8
, − 1

48
6.0 × 10−8 2.9 × 10−8 3.0 3.4

9 1
16
, 1
32

1.4 × 10−7 7.0 × 10−8 2.5 2.9
10 − 1

32
, 1
64

1.8 × 10−7 8.9 × 10−8 2.4 2.7
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where we introduced for convenience λeff ¼ ðλ1λ2λ3λ4Þ1=4
and Cexp

I are the previously derived upper limits on
CIðΛÞ ≤ Cexp

I . We show these limits in Tables II–IV for
completeness. Note that for T-II diagrams in Fig. 3, the
triple-scalar coupling has dimension of mass. Nevertheless,
we can apply the same limits, as in the case of T-I, assuming
this coupling to be of order μ ¼ λeffMI.
Closing this section we emphasize once more the

importance of the QCD corrections for some particular
short-range HSMs. The largest impact is found for models
containing the operator OXX

1 . For example, from Table IV
one finds a lower limit on ΛLNV ∼MI of the order
ΛLNV ≳ 6.6 TeV. The corresponding number without
QCD corrections would be ΛLNV ≳ 1.8 TeV. For a detailed
comparison of the limits with and without the QCD
corrections we refer the reader to Ref. [22].

IV. A NON-TRIVIAL EXAMPLE: Rp SUSY

In the previous section we derived limits on eHSMs.
Here, we discuss how to derive limits on models, which

contribute with more than one diagram of the type T-I and/
or T-II in Fig. 3 to the short-range amplitude of 0νββ-decay.
In terms of the previous section these HSMs are linear
combinations of certain eHSMs from the list given in
Tables VI–IX. The example we have chosen is the well-
known case of R-parity violating supersymmetry
(RpSUSY).
It provides LNV vertices with ΔL ¼ 1 from the super-

potential. Importantly, in this model there are the gluino (~g)
and neutralino (χ) Majorana mass terms, originating from
the soft SUSY breaking sector. Then RpSUSY can con-
tribute to a ΔL ¼ 2 process, such as 0νββ-decay, via the
short-range mechanism [30,31] given by Feynman dia-
grams of the topology T-I in Fig. 3 with two ΔL ¼ 1
vertices, two squarks ( ~q) or two selectrons (~e) and a ~g or χ
in the intermediate state. There are in total three gluino
plus six neutralino diagrams Ref. [31], see Fig. 4. It is worth
noting that the gluino exchange is known to give the
dominant contribution in significant parts of the minimal
RpSUSY parameter space [31]. Below we consider the
gluino ~g and the neutralino χ-exchange contributions
separately, as if they were uncorrelated sectors. To make
contact with our general method, we first identify the
transformation properties of the internal SUSY particles,
appearing in the diagram T-I in Fig. 4. The scalars
~uL and ~eL are members of the SUð2ÞL doublets ~QL and
~L, respectively. The SM gauge group assignments
of the internal states of the diagrams are then given as:
~QL ¼ S3;2;1=6, ~dR ¼ S3;1;−1=3, ~L ¼ S1;2;1=2, ~g ¼ ψ8;1;0. For
the simplicity we consider the case of Bino-dominant
lightest neutralino, then χ ¼ ψ1;1;0.
From Tables VI–IX we then identify the operator

combination corresponding to each diagram. For the gluino
diagrams this results in: diagram (a) corresponds to eHSM
#5, (b) to #3 and (c) again to #5. The neutralino diagrams
are: (a) and (c) correspond to #4, (b) to #2, while diagrams
(d)–(f) can be identified with #23. Note that (d) and (e)
come with an additional factor of − 1

2
, see Table VIII.

(a) (b) (c)

(d) (e) (f)

FIG. 4. The six different Feynman diagrams in R-parity violating supersymmetry that contribute to 0νββ decay. The diagrams of the
gluino ~g (a), (b), (c) and the neutralino χ (a)-(f) exchange contributions to 0νββ decay with the intermediate squarks ~u, ~d and selectron ~e.

TABLE IV. The same as in Table II, but for eHSMs decom-
posing in only one of the basis operators Eqs. (4)–(8). Exper-
imental limits on the Wilson Coefficients CIðΛ ¼ 1 TeVÞ ≤ Cexp

I

of these operators and their characteristic scalesMI ≥ λ4=5eff · M̄exp
I

[for the definitions see Eqs. (12), (15)] are derived from the
current 0νββ bounds (1), (2).

Effective operator
decomposition

Cexp
I M̄exp TeV

eHSM #I 76Ge 136Xe 76Ge 136Xe

23 OI ¼ 1
8
OXX

1 2.3×10−9 1.1×10−9 5.7 6.6
24 OI ¼ 1

8
OLR;RL

1
5.2×10−8 2.7×10−8 3.0 3.5

25 OI ¼ 1
32
OLR;RL

3
5.0×10−7 2.5×10−7 1.9 2.2

26 OI ¼ 1
16
OXX

5 1.7×10−7 8.5×10−8 2.4 2.8
27 OI ¼ 1

16
OLR

5 3.4×10−7 1.8×10−7 2.1 2.4
28 OI ¼ 1

16
OXX

3 1.9×10−7 9.5×10−8 2.4 2.7
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From these considerations, we can reconstruct the
corresponding effective Lagrangians in the basis (4)–(8).
In this way we find:
~g-exchange contribution (Fig. 4(a)–(c)):

L~g
eff ¼

G2
F

2mp
ðC~gaOa þ C~gbOb þ C~gcOcÞ

¼ G2
F

2mp

1

48

�
ð2C~ga þ 2C~gc − 7C~gbÞORR

1

−
1

4
ð2C~ga þ 2C~gc þ C~gbÞORR

2

�
: ð16Þ

χ-exchange contribution (Fig. 4(a)–(f)):

L~g
eff ¼

G2
F

2mp

X
i¼a���f

C#iO#i

¼ G2
F

2mp

1

128
½4ðCb þCc þCa þ 4Cf − 2Cd − 2CeÞORR

1

þ ðCb −Cc −CaÞORR
2 �: ð17Þ

The Wilson coefficients were calculated in Ref. [31]:

C~gc ¼
κ3
m~g

1

m4
~uL

; C~ga ¼
κ3
m~g

1

m4
~dR

; C~gb ¼ −
κ3
m~g

1

m2
~uL
m2

~dR

;

ð18Þ

Cb ¼
κ2
mχ

ϵLðuÞϵRðdÞ
m2

~uL
m2

~dR

; Cc ¼
κ2
mχ

ϵ2LðuÞ
m4

~uL

; Ca ¼
κ2
mχ

ϵ2RðdÞ
m4

~dR

;

ð19Þ

Cf¼
κ2
mχ

ϵ2LðeÞ
m4

~eL

; Cd¼
κ2
mχ

ϵLðeÞϵRðdÞ
m2

~eL
m2

~dR

; Ce¼
κ2
mχ

ϵLðeÞϵLðuÞ
m2

~eL
m2

~uL

;

ð20Þ

with

κ2 ¼ λ021114πα2
mp

G2
F
; κ3 ¼ λ0211116παs

mp

G2
F
; ð21Þ

ϵLðψÞ ¼ tanθW ½T3ðψÞ−QðψÞ�; ϵRðψÞ ¼ tanθWQðψÞ;
ð22Þ

where λ0111 is the first generation Rp SUSY coupling, α2 ¼
g22=4π and αs ¼ g23=4π are the SUð2ÞL and SUð3ÞC
couplings, respectively. As usual GF is the Fermi constant
and mp is the proton mass. T3ðψÞ and QðψÞ are the third
component of the weak isospin and the electric charge of
the fermion ψ .
First we consider the ~g-exchange and derive the limits on

the Rp SUSY parameter space. For this we adopt the

conventional assumption m ~uL ≈m ~dR
≈m ~q. Comparing the

Lagrangian (16) with the canonic form (3) and using the
half-life formula (10) we find, by taking into account
the QCD running, for the current experimental limits
(1)–(2) the following upper bounds on the Rp SUSY
Yukawa coupling:

~g− exchange∶ λ0111Ge ≤ 1.0× 10−2
�

m ~q

1 TeV

�
2
�

m~g

1 TeV

�
1=2

;

ð23Þ

λ0111Xe ≤ 7.2 × 10−3
�

m ~q

1 TeV

�
2
�

m~g

1 TeV

�
1=2

ð24Þ

For the case of the neutralino exchange we consider a
particular part of the Rp SUSY parameter space where
m~e ≪ m ~q. This is motivated by the fact that LHC searches
set very strong limits on the colored sector of any
beyond the SM physics. In this domain the dominant
contribution comes from the diagram (f), corresponding to
eHSM #23. We find the limits taking into account the QCD
running

χ − exchange∶ λ0111Ge ≤ 7.3× 10−1
�

m~e

1 TeV

�
2
�

m~χ

1 TeV

�
1=2

ð25Þ

λ0111Xe ≤ 5.1 × 10−1
�

m~e

1 TeV

�
2
�

m~χ

1 TeV

�
1=2

ð26Þ

For the calculation of this limit we assumed N1 ≃ 1. Note
that the limits from the χ-exchange (25), (26) are com-
petitive with those, which come from the ~g-exchange (23),
(24) in the Rp SUSY parameter space domain m ~q ≫ m~e

and m~g ≫ mχ .
In order to demonstrate the significance of the QCD

running we re-calculated the corresponding limit for 76Ge
using the same experimental bound (1), but switching off
the QCD corrections. This results in a modification of the
coefficients β in Table I, which can be found for this
limiting case in Ref. [22]. Without QCD running we obtain
the limits:

~g− exchange∶ λ0111Ge ≤ 9.3× 10−2
�

m ~q

1 TeV

�
2
�

m~g

1 TeV

�
1=2

;

ð27Þ

χ − exchange∶ λ0111Ge ≤ 5.2

�
m~e

1 TeV

�
2
�

m~χ

1 TeV

�
1=2

ð28Þ
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This is about ∼10 (∼7) weaker than the limits for gluino
(neutralino) cases in Eqs. (23) and (25) taking into account
the QCD running. This again demonstrates the crucial role
of the QCD corrections for SRM.

V. DISCUSSIONS AND CONCLUSIONS

In this paper we have calculated QCD-improved
lower limits on the Wilson coefficients and the LNV
mass scales, MI ∼ ΛLNV , for all ultraviolet completions
(“elementary high-scale models”) of the d ¼ 9 0νββ decay
operator, contributing to the short-range part of the
amplitude.
Admittedly, all the limits presented in this paper are

subject to NMEs uncertainties, believed to be within a
factor 2-3 or so. As seen from the half-life formula (10) and
Eqs. (A1)–(A5) the upper limits on the Wilson coefficients
CI are inversely proportional to the NMEs. Therefore, the
NMEs uncertainties translate into corresponding factors in
the CI-limits. However, according to Eq. (15) the lower
limits on the characteristic eHSM mass scale MI is
significantly weaker, since they scale as ð1=CIÞ−1=5.
Limits on MI , therefore, have uncertainties of order
∼ð2 − 3Þ1=5.
The most crucial impact of the QCD loop corrections is

found for the (pseudo-)scalar operators (4), which—due to
the color mismatch effect—mix with the tensor operators
(4). The key point is that the latter have the NMEs, M2,
much large than the NMEs, M1, of the (pseudo-)scalar
operators. Once QCD corrections are taken into account the
large changes in limits on scalar-pseudoscalar operators
occur. Let us briefly comment on the huge ratio M2=M1.
According to Ref. [15], the (pseudo-)scalar operators lead
to a double Fermi type NME, MF;N , while the tensor ones
to a double Gamow-Teller type NME,MGT;N . In the QRPA
calculations, MGT;N=MF;N is typically of order Oð3Þ.
However, the hadronization of the (pseudo-)scalar quark
currents to nucleon currents introduce a much smaller
normalization constant than in the case of the tensor
currents, as seen from Eq. (8) of Ref. [15]. The ratio of
the prefactors α2=α1, calculated with the values of the scalar
and tensor nucleon form factors from Refs. [32,33], is
roughly Oð60Þ. Thus the large value of M2=M1 comes
essentially from the hadronization of the quark currents and
is not a nuclear structure effect.
In closing, we have worked out a general method,

which can be used for finding the limits for any particular
high-scale model, contributing to the SRM of 0νββ decay
with several diagrams. Our method can be used to find
new, improved limits easily, should better experimental
limits or new calculations of the nuclear matrix elements
become available. We would like to stress again, that
QCD running can lead to important changes in the 0νββ
decay limits on the mass scales of LNV extensions of
the SM.
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APPENDIX A: β-PARAMETERS
OF HALF-LIFE FORMULA

The coefficients β entering into the 0νββ-decay half-life
formula (10) are given by [22]:

βXX1 ¼ M1UXX
ð12Þ11 þM2UXX

ð12Þ21;

βLR1 ¼ MðþÞ
3 ULR

ð31Þ12 þM1ULR
ð31Þ22; ðA1Þ

βXX2 ¼ M1UXX
ð12Þ12 þM2UXX

ð12Þ22; ðA2Þ

βXX3 ¼ Mð−Þ
3 UXX

ð3Þ ; βLR3 ¼ MðþÞ
3 ULR

ð31Þ11 ðA3Þ

βXX4 ¼ −jM4jUXX
ð45Þ11 þ jM5jUXX

ð45Þ21; βLR4 ¼ jM4jULR
ð4Þ;

ðA4Þ

βXX5 ¼ −jM4jUXX
ð45Þ12 þ jM5jUXX

ð45Þ22; βLR5 ¼ jM5jULR
ð5Þ:

ðA5Þ

The subscripts of the RGE μ-evolution matrix U in the
parenthesis denote the subscripts of the operators from
Eqs. (4)–(8) mixed under the renormalization, the sub-
scripts without the parenthesis specify the U-matrix
element. Numerical values of these matrix elements,
properly taking into account the quark thresholds, are

ÛXX
ð12Þðμ0;Λ1Þ ¼

�
1.88 0.06

−2.76 0.40

�
; UXX

ð3Þ ðμ0;Λ1Þ ¼ 0.76;

ðA6Þ

ÛLR
ð31Þðμ0;Λ1Þ ¼

�
0.87 −1.40
0 2.97

�
;

ÛXX
ð45Þðμ0;Λ1Þ ¼

�
2.33 0.39i

0.64i 3.35

�
; ðA7Þ

ULR
ð4Þðμ0;Λ1Þ ¼ 0.70; ULR

ð5Þðμ0;Λ1Þ ¼ 2.97: ðA8Þ

and
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ÛXX
ð12Þðμ0;Λ2Þ ¼

�
2.24 0.07

−3.70 0.27

�
;

UXX
ð3Þ ðμ0;Λ2Þ ¼ 0.70; ðA9Þ

ÛLR
ð31Þðμ0;Λ2Þ ¼

�
0.84 −2.19
0 4.13

�
;

ÛXX
ð45Þðμ0;Λ2Þ ¼

�
2.98 0.69i

1.15i 4.82

�
; ðA10Þ

ULR
ð4Þðμ0;Λ2Þ ¼ 0.62; ULR

ð5Þðμ0;Λ2Þ ¼ 4.13: ðA11Þ

for two reference values, Λ1 ¼ MW and Λ2 ¼ 1 TeV,
of the high energy scale Λ, and μ0 ¼ 1 Gev for the low
energy one.
Using Eqs. (A1)–(A11) one can calculate the numerical

values of the βXYi -coefficients (A1)–(A5) for the NMEs
derived in a particular model of nuclear structure. The
values given in Table I have been calculated with the NMEs
Mi taken from Ref. [2] and displayed in Table V.

APPENDIX B: SPECIFICATION
OF eHSMs AND NOTATIONS

Here we comment on the notations used in Tables VI–IX
where we specify all the eHSMs contributing to 0νββ-decay
via the short-range mechanism according to T-I and T-II
diagrams in Fig. 3 with heavy intermediate particles
(messengers). Each eHSM is uniquely specified by the
SM gauge group GSM ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY
assignments of the messengers: Scalar-Fermion-Scalar
fðSÞ; ðψÞ; ðS0Þg for diagram T-I and triple scalar
fðSÞ; ðS0Þ; ðS″Þg for T-II. Thus each set of GSM representa-
tions in curled brackets corresponds to a particular
eHSM ¼ fðÞ; ðÞ; ðÞg. The list of the models is taken from
Ref. [26], however, in our tables we put the eHSMs in
groups with an identifier #I. The eHSMs from the same
group lead in the low-energy limit after integrating out the
heavy particles to the same effective operator OI. These
operators in the form (11) are given in Tables II–IV.

Some eHSMs appear in Tables VI–IX with numerical
coefficients α, like α · fðÞ; ðÞ; ðÞg. In our notations this
means that in the low-energy limit the models belonging to
the group #I tend to the same effective operatorOI but with
different normalization factors so that

α · fðÞ; ðÞ; ðÞg
fðÞ; ðÞ; ðÞg

�
→ OI ðB1Þ

For example, in the group #1 we find the eHSMs for
which

−2 · fðÞ; ðÞ; ðÞg∶ fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg

→ −
1

2
·OI¼1 ðB2Þ

fðÞ; ðÞ; ðÞg∶ fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð8; 2;−1=2Þg
→ OI¼1 ðB3Þ

We also used a shorthand notation for the subsets of eHSMs
in a particular group #I inside the blue boldface curled
brackets, which means

α · ffðÞ; ðÞ; ðÞg;…; fðÞ; ðÞ; ðÞg…g
¼ α · fðÞ; ðÞ; ðÞg;…; α · fðÞ; ðÞ; ðÞg… ðB4Þ

Limits on the Wilson coefficients CI of the eHSMs and
their characteristic mass scalesMI are given in Tables II–IV
for each eHSM listed in Tables VI–IX. For an eHSM
appearing in the latter Tables with a numerical coefficient
eHSM ¼ α · fðÞ; ðÞ; ðÞg the upper limit from Tables II–IV
on its Wilson coefficient should be replaced with α · Cexp

I

and the lower limit on the mass scale with α−1=5M̄exp
I .

We refer the reader to Ref. [26] for the detailed rules
of the reconstruction of the operators OI starting from
the eHSM messenger assignment fðÞ; ðÞ; ðÞg given in
Tables VI–IX.

TABLE V. The numerical values of the nuclear matrix elements Mi taken from Ref. [2].

AX M1 M2 MðþÞ
3 Mð−Þ

3
jM4j jM5j

76Ge 9.0 −1.6 × 103 1.3 × 102 2.1 × 102 j1.9 × 102j j1.9 × 101j
136Xe 4.5 −8.5 × 102 6.9 × 101 1.1 × 102 j9.6 × 101j j9.3j
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TABLE VII. Continuation of Table VI.

T-I
eHSM Mediators ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ with Y ¼ Q − T3

#I fðSÞ; ðψÞ; S0Þg
8 fð3̄; 2;−1=6Þ; ð8; 2; 1=2Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð8; 2; 1=2Þ; ð3̄; 3; 1=3Þ
9 fð3̄; 2;−1=6Þ; ð3; 1;−1=3Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð3; 3;−1=3Þ; ð3̄; 3; 1=3Þg
10 fð3̄; 2;−1=6Þ; ð6̄; 1;−1=3Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð6̄; 3;−1=3Þ; ð3̄; 3; 1=3Þg
11 fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg; fð8; 2; 1=2Þ; ð3; 2; 7=6Þ; ð3; 2; 1=6Þg

fð8; 2; 1=2Þ; ð8; 2;−1=2Þ; ð3; 2; 1=6Þg
12 fð3̄; 2;−1=6Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg
13 fð3; 1;−1=3Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg; fð3; 1;−1=3Þ; ð6; 1; 1=3Þ; ð6; 1;−2=3Þg; fð3; 1;−1=3Þ; ð6; 2;−1=6Þ; ð6; 1;−2=3Þg

fð3; 1;−1=3Þ; ð3; 1;−4=3Þ; ð6; 1;−2=3Þg; fð3; 1;−1=3Þ; ð3; 2;−5=6Þ; ð6; 1;−2=3Þg
−2 · ffð3̄; 2;−1=6Þ; ð6̄; 2; 1=6Þ; ð3̄; 1; 1=3Þgg

14 fð3̄; 2;−1=6Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg
15 fð3̄; 2;−1=6Þ; ð3; 2; 1=6Þ; ð3̄; 1; 1=3Þg
16 fð3; 1;−1=3Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg
17 fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg; fð8; 2; 1=2Þ; ð3; 2; 7=6Þ; ð3; 2; 1=6Þg

fð8; 2; 1=2Þ; ð8; 2;−1=2Þ; ð3; 2; 1=6Þg
18 fð3̄; 2;−1=6Þ; ð1; 2; 1=2Þ; ð3̄; 1; 1=3Þg
19 fð3̄; 2;−1=6Þ; ð8; 2; 1=2Þ; ð3̄; 1; 1=3Þg

fð3̄; 2;−1=6Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg
20 fð3̄; 2;−1=6Þ; ð3; 1;−1=3Þ; ð3̄; 1; 1=3Þg

TABLE VI. Identification of the T-I (Fig. 3) short-range eHSMs. For explanation of notations see Appendix B and the main text.

T-I
eHSM Mediators ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ with Y ¼ Q − T3

#I fðSÞ; ðψÞ; ðS0Þg
1 fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð8; 2;−1=2Þg; fð8; 2; 1=2Þ; ð8; 3; 0Þ; ð8; 2;−1=2Þg; fð8; 2; 1=2Þ; ð3; 3; 2=3Þ; ð1; 3; 1Þg,

fð8; 2; 1=2Þ; ð3; 2; 7=6Þ; ð1; 3; 1Þg; fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð1; 3; 1Þg; fð8; 2; 1=2Þ; ð3̄; 3; 1=3Þ; ð1; 3; 1Þg
−2 · ffð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 3; 1=3Þg; fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg,

fð8; 2; 1=2Þ; ð8; 3; 0Þ; ð3̄; 3; 1=3Þg; fð8; 2; 1=2Þ; ð3; 3; 2=3Þ; ð3; 2; 1=6Þg; fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð3; 2; 1=6Þg
fð8; 2; 1=2Þ; ð8; 3; 0Þ; ð3; 2; 1=6Þgg

2 fð3̄; 2;−1=6Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð1; 3; 0Þ; ð3̄; 3; 1=3Þg
3 fð3̄; 2;−1=6Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð8; 3; 0Þ; ð3̄; 3; 1=3Þg
4 fð3̄; 2;−1=6Þ; ð1; 1; 0Þ; ð3; 2; 1=6Þg; fð3̄; 2;−1=6Þ; ð1; 3; 0Þ; ð3; 2; 1=6Þg; fð6; 3; 1=3Þ; ð3; 3; 2=3Þ; ð3; 2; 1=6Þg,

fð6; 3; 1=3Þ; ð6; 2;−1=6Þ; ð3; 2; 1=6Þg; fð3; 1;−1=3Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg; fð3; 3;−1=3Þ; ð1; 3; 0Þ; ð3̄; 3; 1=3Þg
fð3; 1;−1=3Þ; ð6; 2;−1=6Þ; ð6; 1;−2=3Þg; fð3; 3;−1=3Þ; ð6; 2;−1=6Þ; ð6; 1;−2=3Þg; fð3; 1;−1=3Þ; ð3; 2;−5=6Þ; ð6; 1;−2=3Þg

fð3; 3;−1=3Þ; ð3; 2;−5=6Þ; ð6; 1;−2=3Þg
−2 · ffð3̄; 2;−1=6Þ; ð6̄; 2; 1=6Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð6̄; 2; 1=6Þ; ð3̄; 3; 1=3Þgg

− 1
2
· ffð6; 3; 1=3Þ; ð6; 2;−1=6Þ; ð6; 1;−2=3Þg; fð6; 1; 4=3Þ; ð6; 2; 5=6Þ; ð6; 3; 1=3Þg; fð6; 3; 1=3Þ; ð3; 3; 2=3Þ; ð1; 3; 1Þ; g

fð6; 1; 4=3Þ; ð3; 2; 7=6Þ; ð1; 3; 1Þg; fð6̄; 3;−1=3Þ; ð3̄; 3; 1=3Þ; ð1; 3; 1Þg; fð6̄; 1; 2=3Þ; ð3̄; 2; 5=6Þ; ð1; 3; 1Þgg
5 fð3̄; 2;−1=6Þ; ð8; 1; 0Þ; ð3; 2; 1=6Þg; fð3̄; 2;−1=6Þ; ð8; 3; 0Þ; ð3; 2; 1=6Þg; fð3; 1;−1=3Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þg

fð3; 3;−1=3Þ; ð1; 3; 0Þ; ð3̄; 3; 1=3Þg
6 fð3̄; 2;−1=6Þ; ð3; 2; 1=6Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð3; 2; 1=6Þ; ð3̄; 3; 1=3Þg
7 fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð8; 2;−1=2Þg; fð8; 2; 1=2Þ; ð8; 3; 0Þ; ð8; 2;−1=2Þg; fð8; 2; 1=2Þ; ð3; 2; 7=6Þ; ð1; 3; 1Þg,

fð8; 2; 1=2Þ; ð3; 3; 2=3Þ; ð1; 3; 1Þg; fð8; 2; 1=2Þ; ð3̄; 3; 1=3Þ; ð1; 3; 1Þg; fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð1; 3; 1Þg
−2 · ffð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð8; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 3; 1=3Þg; fð8; 2; 1=2Þ; ð8; 1; 0Þð3̄; 1; 1=3Þg,

fð8; 2; 1=2Þ; ð8; 3; 0Þ; ð3̄; 3; 1=3Þg; fð8; 2; 1=2Þ; ð3; 3; 2=3Þ; ð3; 2; 1=6Þg; fð8; 2; 1=2Þ; ð8; 1; 0Þ; ð3; 2; 1=6Þg,
fð8; 2; 1=2Þ; ð8; 3; 0Þ; ð3; 2; 1=6Þgg
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TABLE IX. Identification of the T-II short-range eHSMs. For notations see Appendix and the main text.

T-II
eHSM Mediators ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ with Y ¼ Q − T3

#I fðSÞ; ðS0Þ; ðS″Þg
1 fð8; 2; 1=2Þ; ð8; 2; 1=2Þ; ð1; 3;−1Þg

−2 · ffð8; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6g; fð8; 2; 1=2Þ; ð3; 3;−1=3Þ; ð3̄; 2;−1=6gg
5 −1 · ffð6; 3; 1=3Þ; ð6̄; 1; 1=3Þ; ð1; 3;−1Þg; fð6; 1; 4=3Þ; ð6̄; 3;−1=3Þ; ð1; 3;−1gg

2 · ffð6; 3; 1=3Þ; ð3̄; 2;−1=6Þ; ð3̄; 2;−1=6Þg; fð3; 1;−1=3Þ; ð3; 1;−1=3Þ; ð6̄; 1; 2=3Þg; fð3; 3;−1=3Þ; ð3; 3;−1=3Þ; ð6̄; 1; 2=3Þgg
7 fð8; 2; 1=2Þ; ð8; 2; 1=2Þ; ð1; 3;−1Þg

−2 · ffð8; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6Þg; fð8; 2; 1=2Þ; ð3; 3;−1=3Þ; ð3̄; 2;−1=6Þgg
11 fð8; 2; 1=2Þ; ð3; 1; 1=3Þ; ð3̄; 2;−1=6Þg
16 2 · fð3; 1;−1=3Þ; ð3; 1;−1=3Þ; ð6̄; 1; 2=3Þg
17 fð8; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6Þg
22 2 · fð6; 1; 4=3Þ; ð3̄; 2;−7=6Þ; ð3̄; 2;−1=6Þg
23 fð1; 2; 1=2Þ; ð1; 2; 1=2Þ; ð1; 3;−1Þg

−2 · ffð1; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6Þg; fð1; 2; 1=2Þ; ð3; 3;−1=3Þ; ð3̄; 2;−1=6Þgg
24 fð1; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6Þg; fð1; 2; 1=2Þ; ð3; 3;−1=3Þ; ð3̄; 2;−1=6Þg

− 1
2
· fð1; 2; 1=2Þ; ð1; 2; 1=2Þ; ð1; 3;−1Þg

26 fð1; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6Þg
27 fð1; 2; 1=2Þ; ð3; 1;−1=3Þ; ð3̄; 2;−1=6Þg
28 3

2
· fð6; 1; 4=3Þ; ð6̄; 1; 2=3Þ; ð1̄; 1;−2Þg

−3 · fð3; 1;−1=3Þ; ð3̄; 1;−1=3Þ; ð6̄; 1; 2=3Þg

TABLE VIII. Continuation of Table VI.

T-I
eHSM Mediators ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ with Y ¼ Q − T3

#I fðSÞ; ðψÞ; ðS0Þg
21 fð3̄; 2;−7=6Þ; ð1; 2;−1=2Þ; ð3; 2; 1=6Þg; fð6; 1; 4=3Þ; ð3; 2; 7=6Þ; ð3; 2; 1=6Þg; fð6; 1; 4=3Þ; ð3; 1; 5=3Þ; ð3; 2; 7=6Þg

fð6; 1; 4=3Þ; ð6; 1; 1=3Þ; ð3; 2; 1=6Þg; fð6; 1; 4=3Þ; ð6; 2; 5=6Þ; ð3; 2; 7=6Þg,
−2 · ffð3̄; 2;−1=6Þ; ð6̄; 1;−1=3Þ; ð3̄; 1; 1=3Þgg

22 fð3̄; 2;−7=6Þ; ð8; 2;−1=2Þ; ð3; 2; 1=6Þg
23 fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð1; 2; 1=2Þg; fð1; 2; 1=2Þ; ð1; 3; 0Þ; ð1; 2;−1=2Þg; fð1; 2; 1=2Þ; ð3; 3; 2=3Þ; ð1̄; 3; 1Þg,

fð1; 2; 1=2Þ; ð3̄; 2; 7=6Þ; ð1; 3; 1Þg; fð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð1; 3; 1Þg; fð1; 2; 1=2Þ; ð3̄; 3; 1=3Þ; ð1; 3; 1Þg
−2 · ffð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 3; 1=3Þg; fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg,

fð1; 2; 1=2Þ; ð1; 3; 0Þ; ð3̄; 3; 1=3Þg; fð1; 2; 1=2Þ; ð3; 3; 2=3Þ; ð3; 2; 1=6Þg; fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð3; 2; 1=6Þg,
fð1; 2; 1=2Þ; ð1; 3; 0Þ; ð3; 2; 1=6Þgg

24 fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð1; 2;−1=2Þg; fð1; 2; 1=2Þ; ð1; 3; 0Þ; ð1; 2;−1=2Þg; fð1; 2; 1=2Þ; ð3; 2; 7=6Þ; ð1; 3; 1Þg,
fð1; 2; 1=2Þ; ð3; 3; 2=3Þ; ð1; 3; 1Þg; fð1; 2; 1=2Þ; ð3̄; 3; 1=3Þ; ð1; 3; 1Þg; fð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð1; 3; 1Þg

−2 · ffð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 3; 1=3Þg; fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg,
fð1; 2; 1=2Þ; ð1; 3; 0Þ; ð3̄; 3; 1=3Þg; fð1; 2; 1=2Þ; ð3; 3; 2=3Þ; ð3; 2; 1=6Þg; fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð3; 2; 1=6Þg,

fð1; 2; 1=2Þ; ð1; 3; 0Þ; ð3; 2; 1=6Þgg
25 fð3̄; 2;−1=6Þ; ð1; 2; 1=2Þ; ð3̄; 1; 1=3Þg; fð3̄; 2;−1=6Þ; ð1; 2; 1=2Þ; ð3̄; 3; 1=3Þg
26 fð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg; fð1; 2; 1=2Þ; ð3; 2; 7=6Þ; ð3; 2; 1=6Þg,

fð1; 2; 1=2Þ; ð1; 2;−1=2Þ; ð3̄; 2; 1=6Þgg
27 fð1; 2; 1=2Þ; ð3̄; 2; 5=6Þ; ð3̄; 1; 1=3Þg; fð1; 2; 1=2Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg; fð1; 2; 1=2Þ; ð3; 2; 7=6Þ; ð3; 2; 1=6Þg,

fð1; 2; 1=2Þ; ð1; 2;−1=2Þ; ð3; 2; 1=6Þgg
28 fð6; 1; 4=3Þ; ð6; 1; 1=3Þ; ð6; 1;−2=3Þg; fð6; 1; 4=3Þ; ð3; 1; 5=3Þ; ð1; 1; 2Þg; fð6̄; 1; 2=3Þ; ð3̄; 1; 4=3Þ; ð1; 1; 2g,

−2 · fð3; 1;−1=3Þ; ð1; 1; 0Þ; ð3̄; 1; 1=3Þg; fð3; 1;−1=3Þ; ð6; 1; 1=3Þ; ð6; 1;−2=3Þg; fð3; 1;−1=3Þ; ð3; 1;−4=3Þ; ð6; 1;−2=3gg
− 3

2
· fð3; 1;−1=3Þ; ð8; 1; 0Þ; ð3̄; 1; 1=3Þgg
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