
CP-violating decays of the pseudoscalars η and η0 and their connection to the
electric dipole moment of the neutron

Thomas Gutsche,1 Astrid N. Hiller Blin,2 Sergey Kovalenko,3 Serguei Kuleshov,3 Valery E. Lyubovitskij,1,3,4,5

Manuel J. Vicente Vacas,2 and Alexey Zhevlakov4
1Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics,

Auf der Morgenstelle 14, D-72076 Tübingen, Germany
2Instituto de Física Corpuscular, Universidad de Valencia–CSIC, Institutos de Investigación,

Ap. Correos 22085, E-46071 Valencia, Spain
3Departamento de Física y Centro Científico Tecnológico de Valparaíso (CCTVal),

Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
4Department of Physics, Tomsk State University, 634050 Tomsk, Russia

5Laboratory of Particle Physics, Mathematical Physics Department,
Tomsk Polytechnic University, 634050 Tomsk, Russia

(Received 12 December 2016; published 28 February 2017)

Using the present upper bound on the neutron electric dipole moment, we give an estimate for the upper
limit of the CP-violating couplings of the ηðη0Þ to the nucleon. Using this result, we then derive constraints
on the CP-violating ηðη0Þππ couplings, which define the two-pion CP-violating decays of the η and η0

mesons. Our results are relevant for the running and planned measurements of rare decays of the η and η0

mesons by the GlueX Collaboration at JLab and the LHCb Collaboration at CERN.
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I. INTRODUCTION

The CP violation (CPV) is crucial for understanding
the observed baryon asymmetry of the Universe (BAU).
In the Standard Model (SM), CP is explicitly broken by
the complex phase of the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix and by the θ term of QCD.
Up to date, experimentally CPV has only been observed in
K- and B-meson mixing and hadronic decays [1], which are
perfectly compatible with the CKM phase. On the other
hand, the CPV of SM origin is by far insufficient for the
explanation of the BAU. The missing amount of CPV is
believed to arise from non-SM sources.
Apart from the above-mentioned CPVobservables, there

are others with distinct sensitivity to different sources of
CPV. Among them, the electric dipole moments (EDMs) of
the neutron, leptons, and atoms have attracted special
attention [2–5]. In particular, the neutron EDM is weakly
sensitive to the CKM phase, but strongly sensitive to the θ
term, constraining the latter to be unnaturally small. This
smallness is elegantly explained by the famous Peccei and
Quinn mechanism [6,7].
Various beyond-the-SM contributions to the EDM have

been studied in the literature, for example, the R-parity
violating supersymmetry [8–11] and meson-cloud effects
in the nucleon [12,13]. For a review on EDMs as probes of
new physics, see, e.g., Ref. [14].
There is also an extensive experimental program, both

for the measurements of the EDMs and looking for rare
CPV decays with increasing sensitivity. In particular,
searches for rare η and η0 decays have been performed
by the LHCb Collaboration at CERN [15] and are planned

by the GlueX experiment at JLab (Hall D) [16]. In the
present paper, we focus on ηðη0Þ → ππ. As will be shown,
the CPV ηðη0Þππ couplings underlying these decays also
contribute to the neutron EDM. Thus, the current exper-
imental limits on the neutron EDM [1]

jdnj ≤ 2.9 × 10−26e cm; 90% C:L:; ð1Þ

will allow us to derive new indirect upper bounds on the
branching ratios of these CPV decays. The current direct
experimental 90% C.L. upper limits [1,15] are

Γðη → ππÞ
Γtot
η

<

�
1.3 × 10−5 for πþπ−

3.5 × 10−4 for π0π0
;

Γðη0 → ππÞ
Γtot
η0

<

�
1.8 × 10−5 for πþπ−

4.0 × 10−4 for π0π0
: ð2Þ

Here, Γtot
η ¼ ð1.31 � 0.05Þ keV and Γtot

η0 ¼ ð0.198 �
0.009Þ MeV are the total decay widths.
In Ref. [2], the size of the neutron electric dipole moment

(EDM) was estimated on the basis of a CPV chiral
Lagrangian that couples the light pseudoscalars to the
neutron, modulo the CPV phase. At leading order, only
the contributions of the charged mesons survive, for which
there is no experimental input on the size of their CPV
couplings. In order to relate the neutron EDM to the
couplings with the ηðη0Þ, next-to-leading order chiral
Lagrangians must be taken into account.
This is one of the aims of the present work. We carry out

the analysis of the EDM within fully covariant chiral
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perturbation theory (ChPT) and with the explicit inclusion
of intermediate spin-3=2 states, namely the Δð1232Þ
resonance. The latter couples strongly to the nucleon
and is therefore expected to give important contributions
to processes that lie in energies close to the resonance mass.
Note, that the contribution of higher Δ-resonance states is
suppressed by their coupling with the nucleon and pion. We
use the extended on-mass shell (EOMS) scheme [17,18] for
renormalization. It is relativistic, satisfies analyticity, and
usually converges faster than nonrelativistic approaches.
The paper is organized as follows. In Sec. II, we

construct the Lagrangian for the CP-violating coupling
of the ηðη0Þ to the pions, in order to connect it with the
branching ratio of the reaction. In Sec. III, we use this input
to construct the CP-violating coupling of the ηðη0Þ to the
nucleon. The CP-conserving coupling is discussed in
Sec. IV, with the usual chiral Lagrangian considerations.
In Sec. V, we give a brief overview on the couplings with
vector mesons. The calculation of an estimate for the
neutron EDM with these tools is shown in Sec. VI. By
comparing the result with the experimental constraint on
the EDM, we extract an estimate for the ηðη0Þ → ππ
branching ratio upper limits. Finally, in Sec. VII, we
summarize the work and give our conclusions.

II. THE CP-VIOLATING ηðη0Þ → ππ DECAY

The effective Lagrangian describing the CP-violating
ηðη0Þππ coupling is given by [5]

LCP
Hππ ¼ fHππMHH~π2; ð3Þ

with H ¼ η; η0, MH the mass of the ηðη0Þ meson, and fHππ

the coupling constant of ηðη0Þ to the pions. Thus, the decay
width is given by

Γ¼nΓj~pπj
8πM2

H
jMHππj2¼nΓ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H−4M2
π

p
4π

jfHππj2; ð4Þ

where nΓ is an additional final-state factor, which equals
1=2 for the π0π0 and 1 for the πþπ− channel. Using the

limits from Eq. (2), we obtain upper limits for the coupling
constants.
Here, we choose to calculate the charged and neutral

channels separately, and to keep only the lower result as the
global upper limit

jfηππj < 2.1 × 10−5; jfη0ππj < 2.2 × 10−4: ð5Þ

III. THE CP-VIOLATING COUPLINGS OF
THE η AND η0 TO THE NUCLEON

With the previous considerations, one can obtain an
estimate for the CP-violating coupling of the ηðη0Þ to the
nucleon

LCP
HNN ¼ gCPHNNHN̄N; ð6Þ

with the ansatz that the coupling is made via pion loops as
shown in Fig. 1.
The chiral Lagrangians to describe the couplings appear-

ing in those loops are

Lð1Þ
N ¼ Ψ̄

�
iD −mþ g0

2
uγ5

�
Ψ;

Lð1Þ
ΔπN ¼ ihA

2F0MΔ
Ψ̄Taγμνλð∂μΔνÞð∂λπ

aÞ þ H:c:; ð7Þ

whereΨ is the nucleon doublet ðp; nÞT with massm, andΔ
the isospin-3=2 quadruplet ðΔþþ;Δþ;Δ0;Δ−ÞT with mass
MΔ. The covariant derivative is given by

Dμ ¼ ð∂μþΓμÞ; Γμ ¼
1

2
½u†ð∂μ− irμÞuþuð∂μ− ilμÞu†�:

ð8Þ

The meson fields appear through

u2 ¼ U ¼ exp

�
iπ̂
F0

�
; π̂ ¼ ~π ~τ ¼

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
;

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�; ð9Þ

(a) (b) (c)

FIG. 1. Loops that can contribute to the CP-violating coupling of the ηðη0Þ to the nucleon: (a) ηðη0Þ-nucleon loop diagram, (b)
ηðη0Þ-Δð1232Þ loop diagram, (c) tadpole ηðη0Þ loop diagram. The single solid lines stand for nucleons, the double lines for the Δ, the
dashes for pions, and the dotted lines for the ηðη0Þ. The black box at the Hππ vertex indicates the CP-violating coupling.
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with rμ and lμ being right- and left-handed external fields,
and F0 is the meson-decay constant. At leading chiral
order, the low-energy constant (LEC) g0 corresponds to
the physical axial-vector coupling constant gA ¼ 1.27.
Furthermore, we use the notation

γμνλ ¼ 1

2
fγμν; γλg; γμν ¼ 1

2
½γμ; γν�: ð10Þ

The coupling hA can be obtained from the Δ width, leading
to the value hA ¼ 2.85 [19]. The conventions and defi-
nitions for the isospin operators Ti follow Ref. [20],

T1 ¼ 1ffiffiffi
6

p
�
−

ffiffiffi
3

p
0 1 0

0 −1 0
ffiffiffi
3

p
�
;

T2 ¼ −iffiffiffi
6

p
� ffiffiffi

3
p

0 1 0

0 1 0
ffiffiffi
3

p
�
;

T3 ¼
ffiffiffi
2

3

r �
0 1 0 0

0 0 1 0

�
: ð11Þ

We would like to stress, that the contribution of
higher Δ-resonance states is suppressed by their cou-
pling with the nucleon and pion. In particular, the Δ →
N þ π decay rate in terms of the coupling constant hA is
given by [19]

ΓðΔ → N þ πÞ ¼ h2A
48πF2

π
ðP�Þ3 EN þm

MΔ
; ð12Þ

where P� ¼ λ1=2ðM2
Δ; m

2; M2
πÞ=ð2MΔÞ and EN ¼

ðM2
Δ þm2 −M2

πÞ=ð2MΔÞ are the magnitude of three-
momentum and energy of the nucleon in the Δ rest
frame,Mπ is the pionmass, and λðx; y; zÞ ¼ x2 þ y2 þ z2 −
2xy − 2xz − 2yz is the Källen triangle kinematical
function. Next, using the data (central values) for the
decay widths ΓðΔþþð1232Þ → pþ πþÞ ¼ 115 MeV and
ΓðΔþþð1600Þ → pþ πþÞ ≈ 50 MeV, we get for the ratio
of the corresponding couplings squared

R ¼
�
hAð1600Þ
hAð1232Þ

�
2 ≃ 0.05: ð13Þ

This means that the contribution of the Δð1600Þ state
relative to the Δð1232Þ in the diagram of Fig. 1(b) is
strongly suppressed.
From isospin considerations, it should be clear that there

is no contribution from Fig. 1(c), due to the cancellation of
the πþ and the π− loop. The loops in Figs. 1(a) and 1(b) do
contribute, though. With the Lagrangians introduced in
Eq. (7) and the vertex from Eq. (3), the loop in Fig. 1(a)
reads

gCPHNN ¼−iI2Nπ

g2AfHππMH

F2
π

×
Z

ddz
ð2πÞd

ðzþkÞγ5ðp− zþmÞzγ5
½ðkþ zÞ2−M2

π�½z2−M2
π�½ðp− zÞ2−m2� ;

ð14Þ

where k is the momentum of the ηðη0Þ, and INπ is the
isospin factor. It is 1=2 for the π0n loop and

ffiffiffi
2

p
=2 for π−p.

The incoming nucleon momentum is given by p. To
estimate the coupling, we use the approximation where
the external nucleon legs are on shell. When simplifying
this integral with the help of Feynman parameters and
dimensional regularization, we obtain the result,

gCPHNN ¼ g2AI
2
Nπ

F2
π

fHππMH

Z
1

0

dfa

Z
1−fa

0

dfb

×

�
−3mðfbþ1Þλ2ðΔHNNÞþm

2þfb
2

ρ2ðΔHNNÞ

þðfaðfbþ2Þðfaþfb−1Þk2mþf3bm
3Þλ3ðΔHNNÞ

�
:

ð15Þ

In the last expression, fa and fb are Feynman parameters,
and

λ2ðΔÞ ¼
1

16π2

�
2

ϵ
− log

�
Δ
μ2

�
þ logð4πÞ − γE

�
;

ρ2ðΔÞ ¼
2

16π2
; λ3ðΔÞ ¼

1

16π2Δ
; ð16Þ

with ϵ ¼ 4 − d. Here, d is the Minkowski-space dimension,
and the renormalization scale μ is set to the nucleon mass.
For this diagram, we have

ΔHNN ¼ M2
πð1 − fbÞ − fak2ð1 − fa − fbÞ þm2f2b: ð17Þ

For the purpose of comparison, we extract the heavy-
baryon limit from Eq. (15) by taking the leading order
of the Taylor expansion around the small parameter m−1.
When choosing a vanishing k2 ¼ 0 for the H, the
CP-violating coupling has the compact form

gCP;HB
HNN ¼ 3fHππg2AmMHðγE − 2 − logð4πÞ − 2

ϵÞ
32π2F2

π
: ð18Þ

This result is in agreement with the previous calculations of
Ref. [5] after some typos are corrected.
The divergences are absorbed with the MS scheme:

terms proportional to 2
ϵ þ logð4πÞ − γE are subtracted.

Setting k2 ¼ 0, we obtain a compact result for Eq. (15),
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gCPHNN ¼ −
3fHππg2AMH

16π2F2
πm

�
M2

π log
�

m
Mπ

�
þm2 þMπðM2

π − 3m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

π

p

×

�
arctan

�
Mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 −M2
π

p
�
þ arctan

�
2m2 −M2

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2M2

π −M4
π

p
���

: ð19Þ

As for Fig. 1(b), with a Δ intermediate state, the coupling reads

gCPHNN;Δ ¼ iI2NΔπ
h2AfHππMH

F2
πM2

Δ

Z
ddz
ð2πÞd

ðpα − zαÞzδγαβδSββ
0

Δ ðp − zÞðpα0 − zα
0 Þðzδ0 þ kδ

0 Þγα0β0δ0
½ðkþ zÞ2 −M2

π�½z2 −M2
π�½ðp − zÞ2 −M2

Δ�
; ð20Þ

where the isospin factor INΔπ is 1=6 for the π0Δ0 loop and 1=3 for the combination of π−Δþ and πþΔ−. TheΔ propagator is

SαβΔ ðpÞ ¼ pþMΔ

p2 −M2
Δ þ iε

�
−gαβ þ 1

D − 1
γαγβ þ 1

ðD − 1ÞMΔ
ðγαpβ − γβpαÞ þ D − 2

ðD − 1ÞM2
Δ
pαpβ

�
: ð21Þ

When putting the external nucleons on shell and choosing k2 ¼ 0, we obtain

gCPHNN;Δ ¼ fHππh2Am
2MH

1152π2F2
πM2

Δ

�
−
6ðm2 þM2

π −M2
ΔÞ

m
þ 6ð2mþ 3MΔÞ log

�
M2

Δ
m2

�
þ 4m

−
6ð2m4 þ 3m3MΔ þm2ð2M2

Δ − 6M2
πÞ þmð3M3

Δ − 3M2
πMΔÞ þ 2ðM2

π −M2
ΔÞ2Þ

m3

þ 1

m5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m4 þ 2m2ðM2

π þM2
ΔÞ − ðM2

π −M2
ΔÞ2

p
× ½6ð2m4 − 5m3MΔ þm2ð6M2

Δ − 4M2
πÞ þ 5mMΔðM2

π −M2
ΔÞ þ 2ðM2

π −M2
ΔÞ2Þ

× ðm2 þ 2mMΔ −M2
π þM2

ΔÞ2� ×
�
arctan

�
−m2 −M2

π þM2
Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−m4 þ 2m2ðM2
π þM2

ΔÞ − ðM2
π −M2

ΔÞ2
p

�

− arctan

�
m2 −M2

π þM2
Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−m4 þ 2m2ðM2
π þM2

ΔÞ − ðM2
π −M2

ΔÞ2
p

��

þ 3

m5
logðM

2
π

M2
Δ
Þ½2m6 þ 3m5MΔ þ 6m4M2

π þ 6m3M2
πMΔ þ 6m2M2

πðM2
Δ −M2

πÞ

− 3mMΔðM2
π −M2

ΔÞ2 þ 2ðM2
π −M2

ΔÞ3�
�
: ð22Þ

Using the pion-decay ratio Fπ ¼ 92.4 MeV and the
upper bounds on the CP-violating couplings fHππ as
introduced in Eq. (5), one obtains the following upper
limits,

jgCPηNN j ¼ 2.8 · 10−5; jgCPη0NN j ¼ 5.1 · 10−4;

jgCP;HB
ηNN j ¼ 3.9 · 10−5; jgCP;HB

η0NN j ¼ 7.1 · 10−4;

jgCPηNN;Δj ¼ 7.9 · 10−6; jgCPη0NN;Δj ¼ 1.4 · 10−4: ð23Þ

One can see from the numerical result that it is important to
take the Δ loop into account, as its contribution is larger

than 20% of the nucleon’s. Furthermore, although the
magnitude of the heavy-baryon calculation is similar in
size to the fully covariant one, one can see that there is a
sizeable change of around 30% in the numerical value due
to this nonrelativistic approximation.1

1These couplings, without the Δ contribution, had been
calculated previously in the heavy-baryon ChPT (HBChPT)
approach, in Ref. [5]. A direct comparison of the numerical
results has little meaning because of some errors in the formulas.
Also, now we have experimentally better constrained values for
the branching ratios of Eq. (2) [1,15].
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IV. THE CP-CONSERVING COUPLING OF
THE η AND η0 TO THE NUCLEON

The CP-conserving coupling of the ηðη0Þ to the nucleon
is given by

LHNN ¼ −i
gHNN

2Fη
HN̄kγ5N; ð24Þ

with k the H momentum, and N̄ and N the outgoing and
incoming nucleon states, respectively. In this calculation,
the decay constants Fη and Fη0 are taken from Ref. [21],
where they have been calculated taking into account the
mixing of the quark nonstrange Fq and strange Fs leptonic
decay constants,

Fη ¼ 1.37Fπ; Fη0 ¼ 1.16Fπ: ð25Þ

The physical η and η0 are a mixing of the singlet and the
octet states. Thus, the coupling π0nn is given by
−gA ¼ −ðF þDÞ, while the ηnn and η0nn vertices have
the couplings gηnn ¼ ðDþ FÞ cosψ þ ffiffiffi

2
p ðF −DÞ sinψ

and gη0nn ¼
ffiffiffi
2

p ðD − FÞ cosψ þ ðF þDÞ sinψ , respec-
tively. The lower-case n refers to the neutron. The mixing
angle ψ between the η and the η0 has been estimated in many
works [21–27] to be in a range between 38° [26] from
η → eþe−γ decay data and 45° [22] in a ChPTanalysis. The
more recent results tend to havevalues close to 40°,whichwe
use in the following. We also take the physical-average
values for F ¼ 0.47 and D ¼ 0.8 [28].

V. COUPLINGS OF VECTOR MESONS

In the present work, we also study the effects of loops
containing vector mesons coupling to the ηðη0Þ and to the
nucleon. The relevant pieces of the Lagrangians describing
this type of couplings are [29,30]

LγHV ¼ e
4
gγHVϵμναβFμνVαβH; ð26Þ

LVNN ¼ N̄

�
gvγμ þ gt

σμν

2m
∂ν

�
VμτVN; ð27Þ

where the coupling gγHV is parametrized as gγHV ¼
λHV=MH. The values of the dimensionless couplings gVv ,
ratio gVt =gVv , λHV are taken from Refs. [1,5,30] and are
summarized in Table I. Here, τV ¼ τ3 for V ¼ ρ0 and
τV ¼ 12 for V ¼ ω. The λHV couplings are fixed by data [1]
on rates of the ρðωÞ → ηγ and η0 → ρðωÞγ decays, which
are related as

ΓðV → ηþ γÞ ¼ α

24
λ2ηV

M3
V

M2
H

�
1 −

M2
H

M2
V

�
2

;

Γðη0 → V þ γÞ ¼ α

8
λ2η0VMη0

�
1 −

M2
V

M2
η0

�
2

: ð28Þ

The electromagnetic field couples via the usual definition
Fμν ¼ ∂μAν − ∂νAμ and Vμν ¼ ∂μVν − ∂νVμ. The propa-
gator of a vector-meson field with momentum k and mass
mV is taken as

1

k2 −m2
V

�
−gαβ þ kαkβ

m2
V

�
: ð29Þ

Here, we want to remark that the values for the couplings
are poorly known, for which reason they are an important
source of uncertainty for the results. Furthermore, in higher
orders, they have a dependency on the virtuality of the
vector meson, which we ignore in the leading-order
calculations that follow.

VI. CALCULATION OF THE NUCLEON EDM

The EDM is extracted from the amplitude coupling the
photon to the nucleon. In our case, as the amplitude always
involves a CP-violating vertex, only one form factor
containing the EDM appears. Therefore, the CP-violating
part of the vector current Jμ between baryon states reads

hBðp0ÞjJμCPVjBðpÞi ¼ ūðp0Þ iσ
μνγ5qν
4m

FEDMðq2ÞuðpÞ; ð30Þ

where qν is the photon momentum, ϵμ its polarization, and
σμν ¼ iγμν. At the point where q2 ¼ 0, the form factor
reduces to the electric dipole moment FEDMð0Þ ¼ ~dN .
In our model, the CPV comes from the loops of Fig. 2.

TABLE I. Parameters for the vector-meson coupling
Lagrangians.

V gVv gVt =gVv ληV λη0V

ρ0 2.4 6.1 0.87 1.27
ω 16 0 0.25 0.40

(a)

(b)

FIG. 2. Loops that can contribute to the neutron EDM, via: (a)
an ηðη0Þ propagating in the loop, (b) an ηðη0Þ and a vector meson
propagating in the loop. The solid line represents the neutron, the
dotted line the ηðη0Þ, the dashed lines are vector-meson contri-
butions, and the wavy line corresponds to the photon. Again, the
black box stands for a CP-violating vertex.
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In Fig. 2(a), the photon couples to the nucleon that
propagates inside the loop. In the particular case of the
neutron, the leading-order coupling to the photon vanishes,
for which reason only next-to-leading order terms contrib-
ute. The second-order nucleon Lagrangian is needed to
describe such a vertex at lowest nonvanishing order for the
neutron, which reduces to

Lð2Þ
γnn ¼ σμνFμν

eκn
4m

; ð31Þ

where κn ¼ −1.913 is the neutron magnetic moment in
units of e

2m.
A direct coupling of the photon to an ηðη0Þ propagating

inside a loop is not possible, due to this meson’s vanishing
charge. Nevertheless, as is depicted in Fig. 2(b), it is
possible to achieve a coupling via a vector-meson
exchange, which here we also perform for the sake of
comparison with Ref. [5] and for an estimate of the
importance of its effect.
The amplitude of Fig. 2(a) reads

eκngHNNḡHNN

8mFH

Z
ddz
ð2πÞd

1

½z2 −M2
H�½ðp − zÞ2 −m2�½ðpþ q − zÞ2 −m2� ½ðpþ q − zþmÞðqϵ − ϵqÞðp − zþmÞzγ5

−zγ5ðpþ q − zþmÞðqϵ − ϵqÞðp − zþmÞ�; ð32Þ

which for the dipole moment ~dn in units of e
2m at q2 ¼ 0 leads to

~dn;a ¼
mκnḡHNNgHNN

FH

Z
1

0

dfb

Z
1−fb

0

dfafð6fa − 5Þλ2ðΔEDM;aÞ þ ð2 − faÞρ2ðΔEDM;aÞ

− 2m2½faðf2a − 2Þ þ 2ð1þ ðfa − 1ÞfaÞfb þ ðfa − 2Þf2b�λ3ðΔEDM;aÞg: ð33Þ

Together with the definitions in Eq. (16), we choose the notation

ΔEDM;a ¼ M2
Hð1 − fa − fbÞ þm2ðfa þ f2bÞ: ð34Þ

After integration, the analytical expression is also quite compact,

~dn;a ¼
κnḡHNNgHNN

32π2FHm3

�
m4 − 3m2M2

H þ ð3M4
H − 6m2M2

HÞ log
�
MH

m

�
−

3M3
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 −M2
H

p ðM2
H − 4m2Þ

×

�
arctan

�
MHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 −M2
H

p
�
þ arctan

�
2m2 −M2

H

MH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

H

p
���

: ð35Þ

As for the amplitude in Fig. 2(b), it is given by

eλHVτVḡHNN

MH

Z
ddz
ð2πÞd

� ðzþmÞ
½ðp − zÞ2 −M2

V �½z2 −m2�½ðp0 − zÞ2 −M2
H�

qμϵνðp − zÞαiϵμναβ
�
−gββ0 þ

ðp − zÞβðp − zÞβ0
M2

V

�

×

�
gVv γβ

0 −
gVt
4m

ðp − zÞα0 ½γβ0 ; γα0 �
�
−
ðgVv γβ0 þ gVt

4m ðp0 − zÞα0 ½γβ0 ; γα0 �Þð−gβ0β þ ðp0−zÞβ0 ðp0−zÞβ
M2

V
Þ

½ðp − zÞ2 −M2
H�½z2 −m2�½ðp0 − zÞ2 −M2

V �

× qμϵνðp0 − zÞαiϵμναβðzþmÞ
�
: ð36Þ

For this loop diagram, the analytical result has the very
simple form

~dn;b ¼ 2
λHVτVmḡHNN

MH

Z
1

0

dfb

Z
1−fb

0

dfa

× fðgVv − gVt Þ½2λ2ðΔEDM;bÞ þ 3ρ2ðΔEDM;bÞ�g;

where

ΔEDM;b ¼ m2ð1 − fa − fbÞ2 þM2
Hfb þm2

Vfa:

Note that, for each of the two diagrams in Fig. 2(b)
separately, there are also pieces of the type λ3ðΔEDM;bÞ,
but they cancel each other. Integrating over the Feynman
parameters yields
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~dn;b ¼
ḡHNNðgVt − gVv ÞλHVτV
24π2m3MHðM2

H −m2
VÞ

�
m2ðM4

H −m4
VÞ þM3

Hð4m2 −M2
HÞ3=2

×
�
arctan

�
MHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 −M2
H

p
�
− arctan

�
M2

H − 2m2

MH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

H

p
��

−M3
Vð4m2 −M2

VÞ3=2
�
arctan

�
MVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 −M2
V

p
�
− arctan

�
M2

V − 2m2

MV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

V

p
��

þM4
Hð6m2 −M2

HÞ log
�
MH

m

�
−M4

Vð6m2 −M2
VÞ log

�
MV

m

��
: ð37Þ

The numerical results are summarized in Table II. The
vector-meson contributions of Fig. 2(b) turn out to be of the
same order of magnitude as the loops in Fig. 2(a). This is to
be expected, even though the vector mesons are higher-
mass states. For Fig. 2(a), the Lagrangian of the first
chiral order does not allow a coupling of the photon to the
neutron. Therefore, this contribution is suppressed, and
the vector-meson contributions become equally important.
The sum of all the contributions yields a total value for the
dipole moment of dtotn ¼ 4.2 × 10−18e cm. Note that this
value takes into account the new result for the η0 two-pion
decay [15]. Therefore, it is smaller by approximately a
factor of

ffiffiffi
3

p
, when compared to values obtained from the η0

two-pion decays in Ref. [1]. Considering the current
experimental upper limit of 2.9 × 10−26e cm for the neu-
tron dipole moment, the ratio between expectation and
measurement is of the order of 108. This means that the
present upper limit for the decay ratio of the ηðη0Þ into two
pions gives a large overestimation of the CP-violating
coupling constant. In fact, in order for the results to be
compatible with the experimental constraint on the neutron
dipole moment, the branching ratio would have to be at
least 8 orders of magnitude smaller.
It is interesting to confront these results with those in

Ref. [2]. There, as mentioned, the size of the neutron EDM
was estimated within a similar framework as presented
here, but by considering a CP-violating vertex in the
coupling of the charged mesons to the baryons and
calculating their induced contributions to the EDM at
leading chiral order. There, up to a factor including the
unknown CP-violating phase θ, the EDM was estimated to
be of the order of 10−16e cm. The fact that we get an
estimate approximately 2 orders of magnitude smaller is in
good agreement with that calculation, knowing that for
the neutral mesons considered here, the diagrams that

contribute are of the next chiral order. It is important to
keep in mind that the values shown in Table II are not to be
seen as predictions for the neutron EDM, but as estimates
for the order of magnitude of the ηðη0Þ branching ratios
into two pions. Other processes, which are beyond the
scope of this paper, give additional contributions to
the neutron EDM. These are, e.g., pieces obtained from
the CP-violating decay of the ηðη0Þ into four pions or
processes that do not conserve flavor via the quark-mixing
matrix. Furthermore, as mentioned in Sec. V, some of the
coupling constants used here are poorly known, and the
results depend on the renormalization scheme used.
Nevertheless, due to the very large discrepancy between
the experimental constraint on the EDM and the one
calculated from the current upper limits for the CP-violating
branching ratios, the results are still rigorous enough to be
instructive. The conclusions made here remain, even if
other processes are to be additionally considered, or if the
coupling constants are to have different sizes.

VII. SUMMARY

In the present paper, we calculated the nucleon EDM
originated by a CP-violating coupling to the ηðη0Þ meson.
In particular, we focused on the result for the neutron, as its
experimental upper limit is very small, 2.9 × 10−26e cm.
This limit sets a very strong constraint on observables
related to it. More specifically, if a neutron EDM is to exist,
then CPV has to occur. Therefore, here the goal was to give
an estimate of the size of this violation.
This was achieved by constructing a CP-violating

coupling of the η to the nucleon via loops that include
an ηðη0Þππ vertex. While there are experimental results for
the upper limit of the ηðη0Þ → ππ decay ratio, here we
wanted to test if this constraint is indeed compatible with
the limit on the neutron EDM. The Δ-isobar contributions
were taken into account as well, leading to a correction to
the CP-violating ηðη0ÞNN vertex larger than 20%.
We considered two possible sources for the neutron

EDM. In one case, the photon coupled to the neutron within
a loop with aCP-violating ηNN vertex. In the other, vector-
meson contributions were considered as well. The two
contributions turned out to be of a similar size.

TABLE II. Contributions to the upper limit of the neutron
EDM, from the current experimental upper limits of the η and η0
branching ratios into two pions [1,15]. The units are e cm.

η η0

Fig. 2(a) 2.7 × 10−20 1.5 × 10−18

Fig. 2(b) 2.0 × 10−19 2.5 × 10−18
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In total, we obtained a constraint on the CP-violating
ηðη0Þ → ππ decay ratio roughly 8 orders of magnitude
smaller than measured in the experiment so far. This is a
very instructive result, since it gives an estimate on
symmetry violations in nature, where experimental results
are not yet achievable.
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