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We show that Bose-Einstein correlations of identical particles in hadron and nucleus high-energy
collisions, lead to long-range rapidity correlations in the azimuthal angle. These correlations are inherent
features of the CGC/saturation approach, however, their origin is more general than this approach. In
framework of the proposed technique both even and odd vn occur naturally, independent of the type of
target and projectile. We are of the opinion that it is premature to conclude that the appearance of azimuthal
correlations are due to the hydrodynamical behavior of the quark-gluon plasma.
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One of the most intriguing experimental observations
made at the LHC and RHIC, is the occurrence of the same
pattern of azimuthal angle correlations in the three types of
interactions: hadron-hadron, hadron-nucleus and nucleus-
nucleus collisions. In all three reactions, correlations in the
events with large density of produced particles, are observed
between two charged hadrons, which are separated by large
values of rapidity [1–7], these correlations do not depend on
the rapidity separation of the particles. Due to causality
arguments [8], two hadrons with large difference in rapidity
between them, could only correlate at the early stage of the
collision and, therefore, we expect that the correlations
between two particles with large rapidity difference (at least
the correlations in rapidity) are due to the partonic state with
large parton density. The CGC/saturation approach (see [9]
for a review) appears to be a natural candidate for the descri-
ption of these correlations, as these correlations are signifi-
cant in the dense colliding systems. However, unlike the
large rapidity correlations, the azimuthal angle correlations
can originate from the collective flow in the final state [10].
At first sight, this source appears even more plausible, since
vnwith odd n do not appear in the CGC/saturation approach.
In this article, we show that the long-range rapidity

correlations in the azimuthal angle, arise naturally from the
Bose-Einstein correlations of produced identical particles in
high-energy collisions. They originate from the initial state
wave function of the colliding particles, and they are features
characteristic of theCGC/saturation approach.However, their
occurrence is more general, and can be estimated in other
frameworks. In this paper, we estimate these correlations in
the framework of the Pomeron calculus. We will show that
this approach leads to the azimuthal correlations, with the
correlation length (Rc), which increaseswith energy (s) being

proportional to R2
c ∝ α0P ln s=s0.

1 Due to such a large corre-
lation length, these correlations do not depend on the trans-
verse momenta behavior of different vertices of Pomeron
interactions, which have only phenomenological sources in
the Pomeron calculus. We will estimate the values of vn,
and demonstrate that vn with odd n appear naturally in this
framework.
In the framework of the Pomeron calculus, the long-range

rapidity correlations stem from the production of two parton
showers (see Fig. 1). The structure of the parton shower is
described by the exchange of a Pomeron, while the upper
and lower blobs in Fig. 1(c) as well as the vertex of parton
emission require modeling in the framework of the Pomeron
calculus. However, if two produced patrons have the same
quantum numbers, we need to take into account interference
diagrams [see Fig. 2(a) and Fig. 2(b)], which lead to an
additional Mueller diagram [12] of Fig. 2(c) in which two
partons with ðy1; pT2Þ and ðy1; pT1Þ are produced. When
pT1 → pT2, the two production processes become identical,
leading to the cross section σðtwo identical patronsÞ ¼
2σðtwo different partonsÞ, as one expects. However, when
jpT2 − pT1j ≫ 1=R where R is the size of the emitter, the
interference diagram becomes small and can be neglected.
For the general case of y1 ≠ y2, the interference diagram

has a more complicated structure than the Mueller diagram
of Fig. 2(c). The general parton diagrams are shown in
Fig. 3(a) and Fig. 3(b) for the case ofΔjy2 − y2j ≫ 1. In the
parton approach, the emission of every parton leads to
the factor Δyi, where Δ is the Pomeron intercept, and yi is
the rapidity difference of the order of ΔY ≫ 1. In the
diagram of Fig. 3(a) and Fig. 3(b), we can see that the
emitted partons for each parton shower can be divided in
three groups:

*gotsman@post.tau.ac.il
†leving@post.tau.ac.il, eugeny.levin@usm.cl
‡maor@post.tau.ac.il

1The soft Pomeron trajectory has the form: αðtÞ ¼ 1þ Δþ
α0Pjtj with the intercept Δ ¼ 0.1–0.14 and the slope α0P ¼
0.2–0.32 GeV−2 from high-energy phenomenology [11].
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first parton shower → Y > … > yi > … > ynð1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nð1Þ
1

> y1 > ynð1Þþ1 > …|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
nð1Þ
2

> y2 > > yi > …|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nð1Þ
3

> 0;

second parton shower → Y > … > yi > … > ynð2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nð2Þ
1

> y1 > ynð2Þþ1 > …|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
nð2Þ
2

> y2 > > yi > …|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nð2Þ
3

> 0: ð1Þ

Integrating over yi, and neglecting yi dependence of the production amplitude [13,14], we obtain the contribution

dσ
dy1d2pT1dy2d2pT2

¼
X∞

nð1Þ
1
þnð1Þ

2
þnð1Þ

3
−2>2

X∞
nð2Þ
1
þnð2Þ

2
þnð2Þ

3
−2>2

Z
dΦð1ÞdΦð2ÞjAðfyi;pTig;y1;pT1;y2;pT2Þj2

¼
XXðΔðY−y1ÞÞn

ð1Þ
1

nð1Þ1 !

ðΔðY−y1ÞÞn
ð2Þ
1

nð2Þ1 !

ðΔðy1−y2ÞÞn
ð1Þ
2

nð1Þ2 !

ðΔðy1−y2ÞÞn
ð2Þ
2

nð2Þ2 !

ðΔðy2−0ÞÞnð1Þ3

nð1Þ3 !

ðΔðy2−0ÞÞnð2Þ3

nð2Þ3 !|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
integral over longitudinal phase space

×
Z Y

i

d2pTijAðfyi¼0;pTig;y1¼0;pT1;y2¼0;pT2Þj2 ð2Þ

where dΦð1Þ and dΦð2Þ denote the phase space of the produced partons in the first and second parton showers.

2
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FIG. 1. Production of two patrons with ðy1; pT1Þ and ðy2; pT2Þ in two parton showers, (a) and (b); (c) shows the Mueller diagrams [12]
for the double inclusive cross section. The wavy lines denote the soft Pomerons.
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FIG. 2. Production of two identical partons with ðy1; pT1Þ and ðy1; pT2Þ in two parton showers (a) and (b). The diagrams in the Mueller
diagram technique [12] are shown in (c). The wavy lines denote the soft Pomerons [13,14].
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FIG. 3. Production of two identical partons with ðy1; pT1Þ and ðy2; pT2Þ for Δjy2 − y1j ≫ 1 in two parton showers (a) and (b);
(a) shows the Mueller diagram [12] for ΔÞjy2 − y1j ≪ 1. The Pomeron intercept αP ¼ 1þ Δ. The wavy lines denote the soft
Pomerons [13,14].
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The cross section of Eq. (2) displays several general
features:
(1) Equation (2) shows the factorization of the longi-

tudinal and transverse degrees of freedom, which is
the principle characteristic of the parton approach, as
well as LLA of QCD [13,14].

(2) After summation over nð1Þi and nð2Þi , the cross section
turns out to be proportional to expðΔð2ðY − y1Þ þ
2ðy1 − y2Þ þ 2ðy2 − 0ÞÞÞ ¼ expð2ΔYÞ, and it does
not depend on y1 and y2.

(3) The factorization allows us to rewrite the general
formula for the correlation of the identical particles
[15] with the coordinates r1 and r2:

d2σ
dy1dy2d2pT1d2pT2

ðidentical partonsÞ

∝ h1þ eirμQμi; ð3Þ

where averaging h…i includes the integration over
rμ ¼ r1;μ − r2;μ. For y1 ¼ y2 Qμ ¼ p1;μ − p2;μ de-
generates to Q≡ pT;12. Due to factorization of the
longitudinal and transverse degrees of freedom in
Eq. (2), the amplitude can be written in the factor-
ized form A ¼ ALðrþ; r−ÞATðrTÞ leading to

heirμQμi ¼ heirT ·QT i|fflfflfflffl{zfflfflfflffl}
averaging over rT

× heirþQ−þir−Qþi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
averaging over rþ;r−

: ð4Þ

The first factor is a constant with respect to y1 and
y2, since the cross section does not depend on the
rapidities of the emitted partons.

(4) From Eq. (2), we can conclude that the emission of
partons with rapidities y2 < yi < y1 give negligible
contributions for Δðy1 − y2Þ ≪ 1. Since the phe-
nomenological value [11] for Δ ¼ 0.1–0.14, we can
simplify our approach for wide range of rapidities
jy1 − y2j < 1=Δ ≈ 7–10. For such rapidities,
Fig. 3(b) can be reduced to the Mueller diagram
of Fig. 3(c), which has the same expression as the
Mueller diagram of Fig. 2(c), since the transverse

amplitudes Aðfyi¼0;pTig;y1¼0;pT1;y2¼0;pT2Þ in
Eq. (2) are the same in these two cases.

Therefore, to recover the correlation function, we can
restrict ourselves to calculating the cross section at y1 ¼ y2.
The cross section for double pion production has the
following generic form (see Fig. 4):

d2σ
dy1dy2d2pT1d2pT2

ðidentical pionsÞ

¼ d2σ
dy1dy2d2pT1d2pT2

½Fig:4ðaÞ and ðbÞ�

þ d2σ
dy1dy2d2pT1d2pT2

½Fig:4ðcÞ� ð5Þ

¼ d2σ
dy1dy2d2pT1d2pT2

ðdifferent pionsÞ

× ½1þ CðRjpT2 − pT1jÞ� ð6Þ

The second term in Eq. (5) describes the interference
diagram in which one π− is produced in one parton shower,
but it is absorbed by another parton shower. CðRjpT2−
pT1jÞ is the correlation function we wish to calculate.
The angular correlation of two idential pions stems from

the diagram of Fig. 4(c) (see diagrams of Fig. 2(c) and
Fig. 3(c) for partons) where the upper BFKL Pomerons
carry momentum kT − pT;12 with pT;12 ¼ pT1 − pT2, while
the lower BFKL Pomerons have momenta kT . As has been
mentioned in this article, we demonstrate a mechanism for
the appearance of these angular correlations in the frame-
work of a simple approach: the soft Pomeron calculus.2 The
Mueller diagrams for the correlation between two π− are
shown in Fig. 4. This approach is based on Gribov Pomeron
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FIG. 4. The Mueller diagrams for production of two identical π− with ðy1; pT1Þ and ðy1; pT2Þ, in two parton showers [see (a)–(c)]. The
zigzag lines denote the soft Pomerons.

2The correlation of identical particles was investigated in the
framework of the soft Pomeron calculus and the mechanism of
the azimuthal angle correlation that we discuss here, has been
proposed in Ref. [16] for hadron and nucleus interactions.
Recently, it has been re-discovered in Ref. [17] in the framework
of the CGC approach. We revisit this formalism for calculations
of vn for odd and even n.
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calculus [18] and the Mueller diagram technique [12],
which has a general origin in the analyticity and unitarity of
strong interaction (see [19]) and which has been proven in
the leading log approximation of perturbative QCD [20].
The exchange of the soft Pomeron leads to the following
contribution to the elastic scattering amplitude [19]

AelðY; kTÞ ¼ igprðkTÞgtrðkTÞPðY; ktÞ
with the Pomeron propagator

PðY; ktÞ ¼ eΔP−α0PYk
2
T ; ð7Þ

where ΔP and α0P denote the intercept and slope of the
Pomeron trajectory, and from the phenomenological
description of experimental data have the values ΔP ¼
0.1–0.14 and α0P ¼ 0.1–0.25 GeV−2 (see Ref. [11]).
Vertices gprðkTÞ and gtrðkTÞ can only be functions of kT .
Their dependence on k2T cannot be found in the framework
of the Reggeon approach, but the exponential form is used
in the phenomenology that describes the current exper-
imental data on soft interaction [11], viz.,

gprðkTÞ ¼ g0pre−
1
2
B0
prk2T ; gtrðkTÞ ¼ g0tre−

1
2
B0
trk

2
T : ð8Þ

As we will show below, the azimuthal angle correlations
do not depend on the form of the parametrization of the
Pomeron vertices. The inclusive cross section is described
by the Mueller diagram of Fig. 5(b), and it takes the form

dσ
dy1d2pT1

¼ gprðkT ¼ 0Þgtrðkt ¼ 0ÞaPPðpT1ÞPðY − y1; kT ¼ 0ÞPðy1; kT ¼ 0Þ

¼ gprðkT ¼ 0Þgtrðkt ¼ 0ÞaPPðpT1ÞPðY; kT ¼ 0Þ ð9Þ
One can see that the inclusive cross section does not depend on rapidity y1, which corresponds to the production of pions in
a one parton shower.
The sum of the diagrams of Fig. 4 can be written as

dσ
dy1d2pT1dy2d2pT2

����
y1¼y2

¼ 2

Z
d2kTNprðkTÞPðY − y1; kTÞaP;PðpT1; kTÞPðy1; kTÞPðY − y1; kTÞaP;PðpT2; kTÞPðy1; kTÞNprðkTÞ

þ 2

Z
d2kTNprðkT − pT;12ÞPðY − y1; kT − pT;12ÞaP;PðpT1; pT2; kTÞPðy1; kTÞ

× PðY − y1; kT − pT;12ÞaP;PðpT1; pT2; kTÞPðy1; kTÞNprðkTÞ

¼ 2e2ΔPY

Z
d2kTfNprðkTÞaP;PðpT1; kTÞaP;PðpT2; kTÞNtrðkTÞe−2α0PYk2T

þ NprðkT − pT;12Þa2P;PðpT1; pT2; kTÞNtrðkTÞe−α0Pð2y1k2Tþ2ðY−y1ÞðkT−pT;12Þ2Þg: ð10Þ

The first observation that at large Y the typical k2T and jkT − pT;12j in both integrals turns out to be of the order of
1=ðα0P2ðY − y1ÞÞ ≪ any dimensional parameters in aPP andN. In other words, both kT andpT;12 are proportional to 1=ðα0PYÞ
which make them smaller than the typical values of the radii, both in the Pomeron-hadron vertices and in vertex aPP.
Therefore, we can neglect the kT and pT;12 dependences of the vertices. From the second term, one can see that p2

T;12 ∼
1=ð2α0PðY − y1ÞÞ ≪ p2

2T andp
2
1T . Hence, at ultrahigh energies, the double inclusive cross section for identical pions is equal:

dσ
dy1d2pT1dy2d2pT2

����
y1¼y2

¼ 2N2ð0Þa2PPðpT1Þe2ΔPY
1

2α0PY

�
1þ exp

�
−2α0P

ðY − y1Þy1
Y

p2
T;12

��
ð11Þ

(y , p   )1 T1

(b)(a)

aPPk

g    (k)pr

g   (k)tr

g    (k)pr

g   (k)tr

Y

0

Y

0

FIG. 5. The contribution of the Pomeron exchange to the elastic
scattering amplitude at momentum transferred k2 (a) and the
Mueller diagram for the inclusive production of a pion at rapidity
y1 and transverse momentum pT1 (b).
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Therefore, at ultrahigh energy, the azimuthal angle (ϕ)
dependence is determined by (i) the correlation length R2

c ¼
2α0P

ðY−y1Þy1
Y and since p2

T;12 ∼ 1=R2
c ≪ μ2, where μ is the

sale of soft interaction which does not depend on energy,
the correlations do not depend on the form of the vertices
and NðQTÞ, which can only be treated phenomenologically
in the framework of the Pomeron calculus, (ii) no symmetry
with respect to ϕ → −ϕ, and (iii) Eq. (11) includes all the
powers of cosϕ and, therefore, we obtain vn with both even
and odd n.
For realistic estimates, we need to use a more phenom-

enological approach. The amplitude NðQTÞ can be written
in the form [11] (see Fig. 6):

NtrðQTÞ ¼ g2trðQTÞ|fflfflffl{zfflfflffl}
eikonal contribution

þ g2tr;DðQTÞ|fflfflfflfflffl{zfflfflfflfflffl}
diffraction contribution

: ð12Þ

For the simplest estimates, we take into account only
the first term in Eq. (12). In other words, we use the
eikonal model for estimates of the amplitude for two
soft Pomeron production. In the case of the nucleus

target and/or projectile, this corresponds to the Glauber
model.
For the vertices of the soft Pomeron interaction with the

projectile and target we use Eq. (8), and for the vertex of
pion emission from the Pomeron we use the simplest
parametrization:

aPPðpT1; pT2Þ ¼ a0PPe
−1
2
Beðp2

T1þp2
T2Þ: ð13Þ

We have neglected the possible dependence of aPP on
k2, as follows from the phenomenological models [11], and
on pT;12. It should be stressed that the more general
form, for example aPPðpT1; pT2Þ ¼ a−PPðpT1 − pT2ÞaþPP ×
ðpT1 þ pT2Þ, even in the case when a−PP ¼ aþPP and this
vertex is symmetric with respect to ϕ → −ϕ, as has been
suggested in perturbative QCD [17], does not change the
conclusion that the resulting expression has no such
symmetry.
In the eikonal approximation, the contribution of the

interference diagram of Fig. 4(c) to the double inclusive
cross section for y1 ¼ y2 is equal to

dσ
dy1d2pT1dy2d2pT2

¼ a2PPðpT1; pT2Þe2ΔPY
ðg0prÞ2ðg0trÞ2

4π2

Z
d2kT expð−Btrk2T − BprðkT − pT;12Þ2Þ

¼ ða0PPÞ2
ðg0prÞ2ðg0trÞ2

4πðBtr þ BprÞ
e2ΔPY expð−ðBe þ BRÞðp2

T1 þ p2
T2Þ − 2BRpT1pT2 cosðφÞÞ; ð14Þ

where

BR ¼ BprBtr

Bpr þ Btr
: ð15Þ

Recall that Bpr ¼ B0
pr þ α0PðY − y1Þ and Btr ¼ B0

tr þ α0Py1.
The sum of all diagrams of Fig. 4 leads to

dσ
dy1d2pT1dy2d2pT2

¼ ða0PPÞ2
ðg0prÞ2ðg0trÞ2

4πðBtr þ BprÞ
e2ΔPY expð−Beðp2

T1 þ p2
T2ÞÞf1þ expð−BRðp2

T1 − 2pT1pT2 cosðφÞ þ p2
T2ÞÞg:

ð16Þ

The expansion of Eq. (16) contains all powers of cosðφÞ or, in other words, all cos ðnφÞ with even and odd n.
We can rewrite Eq. (16) in terms of the observables which can be measured: the slopes of elastic scattering and the

rapidity correlation function Cðy1; y2Þ defined as

(b) (c)

= +

(a)

g(k)

k

g  (k)

k

D

FIG. 6. The structure of the Pomeron-proton amplitude: (1b) figure illustrates the contribution of the eikonal approach, while (1c)
gives the diffraction dissociation contribution, and (2) shows the contribution to NðkTÞ, the production of large mass. The black blob in
(2) denotes the triple Pomeron vertex.
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Cðy1; y2Þ ¼
1

σin

Z
d2pT1d2pT2

dσ
dy1d2pT1dy2d2pT2

=

�
1

σin

Z
d2pT1

dσ
dy1d2pT1

��
1

σin

Z
d2pT2

dσ
dy2d2pT;2

�
: ð17Þ

It is more convenient to introduce a correlation function Cðy1; pT1; y2; pT2Þ as

Cðy1; pT1; y2; pT2Þ ¼
1
σin

dσ
dy1d2pT1dy2d2pT2

ð 1
σin

dσ
dy1d2pT1

Þð 1
σin

dσ
dy2d2pT2

Þ

¼ Cðy1; y2Þ
�
1þ BR

BR þ Be
expð−BRðp2

T1 − 2pT1pT2 cosðφÞ þ p2
T2ÞÞ

�
: ð18Þ

Using Z
2π

0

dφe2pT1pT2 cosðφÞ cos ðnφÞ ¼ 2πInð2pT1pT2Þ; ð19Þ

where InðzÞ is the modified Bessel function of the first kind, we will decompose the term in f…g in Cðy1; pT1; y2; pT2Þ into
Fourier modes in the relative azimuthal angle φ between two produced pions:

Cðy1; pT1; y2; pT2Þ ∝ 1þ 2
X
n¼1

VnΔðpT1; pT2Þ cos ðnφÞ

with VnΔðpT1; pT2Þ ¼
1

2
Inð2BRpT1pT2Þ

e−BRðp2
T1þp2

T2Þ

1þ I0ð2BRpT1pT2Þe−BRðp2
T1þp2

T2Þ
; ð20Þ

assuming that Be ≪ BR.
The coefficients vnðpTÞ are equal to

vnðpTÞ ¼
VnΔðpT; pRef

T Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VnΔðpRef

T ; pRef
T Þ

p ¼ 1ffiffiffi
2

p Inð2BRpT1pRef
T2 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Inð2BRðpRef
T2 Þ2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I0ð2BRðpRef

T2 Þ2Þe−2BRðpRef
T2 Þ2

q
1þ I0ð2BRpT1pRef

T2 Þe−BRðp2
T1þðpRef

T2 Þ2Þ
; ð21Þ

where the value of pRef
T is determined by the experimental procedure. Fixing pRef

T ¼ pT , we obtain

vnðpTÞ ¼
1ffiffiffi
2

p e−BRp2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inð2BRp2

TÞ
1þ I0ð2BRp2

TÞe−2BRp2
T

s
: ð22Þ

Equation (22) stems from the diagrams of Fig. 4. However, like-sign pion pairs contribute a third of the total contribution to
pion-pair production. This means that the double inclusive cross section is equal to

dσ
dy1d2pT1dy2d2pT2

¼ dσ
dy1d2pT1dy2d2pT2

ðunlike pairsÞ þ dσ
dy1d2pT1dy2d2pT2

ðidentical pairsÞ

¼ dσ
dy1d2pT1dy2d2pT2

ðunlike pairsÞ
�
1þ 1

3
CðpT1;pT2Þ

�
: ð23Þ

Therefore, Eq. (22) has to be multiplied by a factor
of 1=3.
In Eq. (15) Bpr and Btr can be expressed in terms of the

slope for the elastic cross section for y1 ¼ y2 ¼ Y=2 for
projectile-projectile and target-target scattering, respec-
tively: Bpr ¼ 1

2
Bel
pr−pr and Btr ¼ 1

2
Bel
tr−tr.

For proton-proton scattering at W¼7GeV, Bpr ¼ Btr ¼
1
2
Bel
p−p ¼ 10 GeV−2 [21], which leads to BR ¼ 5 GeV−2.

Note that the value of BR turns out to be rather large
BR > μ2, where μ is the scale for NðQTÞ and Pomeron
vertices, which is less than or equal to 1 GeV2. This fact
guarantees that the form of the vertices is not essential in

the estimates of vn. However, we would like to again stress
that the appearance of vn with odd n does not depend on the
structure of the vertices, but stems from the Pomeron
propagator. Plugging this value into Eq. (22), we obtain the
vn shown in Fig. 7. One can see that we obtain sufficiently
large values of vn, which are concentrated at rather large
values of pT . The width of the pT distribution will increase
if we use a more complicated structure of the Pomeron-
hadron amplitude (see Fig. 6) and include diffraction
dissociation processes [see Fig. 6(c)], parametrizing
gBðkÞ ¼ g0D exp ð− 1

2
BDk2Þ; Eq. (22) will have the follow-

ing form:
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vnðpTÞ ¼
1

3
ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inð2BRp2

TÞe−2BRp2
T þ σsdBsd

D
σelBel Inð2BDp2

TÞe−2BDp2
T

1þ I0ð2BRp2
TÞe−2BRp2

T þ σsdBsd
D

σelBel I0ð2BDp2
TÞe−2BDp2

T

vuuut ; ð24Þ

where σsd denotes the cross section of the single diffractive
production,3 Bsd

D the slope of the differential cross section
for diffraction dissociation is roughly equal to 1

2
Bel, BD is

the slope of Pomeron-hadron vertex for diffraction disso-
ciation [see Fig. 6(c)]. The value of BD has been evaluated
in Ref. [23], and it is equal ≈1 GeV−2. Figure 7(b) shows

the calculation using Eq. (24) with σsdBsd
D

σelBel . One can see that

the pT distribution becomes broader. We need to include
the diffraction contribution to NðkTÞ for large mass, which
is related to the enhanced diagrams of Fig. 6(2). It is known
that the triple Pomeron vertex has very mild dependence on
the value of transverse momenta, which will be translated in
a much broader distribution of vn with respect to the
transverse momentum. However, to take these diagrams
into account, one needs to rely more on a model, and we
postpone this to a separate paper.
In this article, our goal was not to describe the exper-

imental data, but to demonstrate that a simple model leads to
reasonable values of vn for proton-proton scattering. From
the general expression of Eq. (22), we see that the estimates
are independent of the type of projectile and target. We have
not attempted to obtain an estimate for hadron-nucleus and
nucleus-nucleus scattering, since the Gaussian approxima-
tion for gðk2Þ is not suitable for these reactions. Nevertheless,
in this oversimplified model, Eq. (15) shows that for the
hadron-nucleus interaction, the value and pT dependence of
vn are determined by the size of proton, rather than the size of
the nucleus. Realistic estimates from amodel based onCGC/
saturation approach, in which we successfully described the
diffractive physics, as well as main features of the

multiparticle production reaction [22,24–26] will follow in
the near future. We wish to point out that in the CGC
approach, pions originate from the gluon jet decay, and we
expect the same strength of correlations both for like-like and
unlike-like pion pairs, as is seen in experiments. To illustrate
this, it is sufficient to note, that the production of two like-like
pairs of ρ-resonances, that dominate the inclusive produc-
tion, say ρ0ρ0 þ ρþρþ, generate the same numbers of πþπþ

and πþπ− pairs. It is worthwhile mentioning, that we obtain
the correlation function in the limited region of rapidities
y12 ¼ jy1 − y2j < 1=Δ but, since for large y12 the cross
section of Eq. (2) does not depend on y12, we believe that our
estimates are valid in the wider range of rapidities.
We proposed a mechanism for the long-range rapidity

azimuthal angle correlations which is general, simple, and
has a clear relation to diffractive physics, unlike the
hydrodynamic approach, which is suited to describe only
processes of multiparticle generation. We demonstrated that
this mechanism leads to a value of vn both for even and odd
n, which are of the order of measured values for proton-
proton collisions. We believe that it is premature to
conclude that the occurrence of angular correlations is a
strong argument in support of the hydrodynamical behavior
of the quark-gluon plasma.
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(a) (b)

FIG. 7. vn vs pT using Eq. (22): (a) using the eikonal structure of Pomeron-hadron amplitude [see Fig. 6(b)] while (b) includes the
process of diffraction dissociation [see Fig. 6(c)].

3For our estimates, we took all cross sections from Ref. [22].
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