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In this paper, we find, within the framework of perturbative QCD, that in deuteron-deuteron scattering
Bose-Einstein correlations, due to production of two-parton showers, induce azimuthal angle correlations
with three correlation lengths: the size of the deuteron (Rp), the proton radius (Ry), and the size of the
Balitski-Fadin-Kuraev-Lipatov (BFKL) Pomeron, which is closely related to the saturation momentum
(R, ~ 1/Q,). These correlations are independent of the values of rapidities of the produced gluons (long
range rapidity correlations) for large rapidities (ag|y; — y»| = 1) and have no symmetry with respect to
¢ — 7 — ¢ (pr1 = —p71)- Therefore, they give rise to v,, for all values of 7, not only for even values. The
contributions of the correlation lengths Rp and Ry crucially depend on the nonperturbative contributions,
and obtaining estimates of their values requires a lot of modeling, while the correlations with R, ~ 1/Q,
have a perturbative QCD origin and can be estimated in the color glass condensate approach.
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I. INTRODUCTION

In this paper we continue to resurrect the old ideas of
Gribov Pomeron calculus, namely that Bose-Einstein
correlations lead to strong azimuthal angle correlations
[1], which do not depend on the rapidity difference between
measured hadrons [long range rapidity (LRR) correlations].
In the framework of QCD, these azimuthal correlations
stem from the production of two-parton showers and have
been rediscovered in Refs. [2,3]. In Ref. [4] it was
demonstrated that Bose-Einstein correlations generate v,
with even and odd n values, including values which are
close to the experimental values [5—15].

The goal of this paper is to show that the Bose-Einstein
correlations that have been discussed in Refs. [1,4]
arise naturally in the perturbative QCD approach together
with ones that have been considered in Refs. [2,3].
We believe that the qualitative difference between
these two approaches originates from different sources
of the Bose-Einstein correlations: the two-parton-shower
production in Refs. [1,4] and one-parton shower in
Refs. [2,3].

Here, we consider the azimuthal correlations for deu-
teron-deuteron scattering at high energy. It is well known
[16] (see also Ref. [17]), that Bose-Einstein correlations
provide a possibility to measure the volume of interaction
or, in other words, the typical sizes of the interaction.
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Indeed, the general formula for the Bose-Einstein correla-
tions [16,17] takes the form
d*c

(identical gluons) o (1 + ex@x), (1)
dy dy,d* prid® pra

where averaging (...) includes the integration over r, =
riy—ryu. For the case of y, =y, O, =pi,— Pay
simplifies to Q = pr12 =Pr1 —Pr2s

One can see that Eq. (1) allows us to measure the typical
r, for the interaction. For deuteron-deuteron scattering we
expect several typical r: the size of the deuteron Rj, the
nucleon size Ry, and the typical size, related to the
saturation scale (ry, = 1/Q,, where Q, denotes the satu-
ration scale [18]). In our calculation we hope to see the
appearance of these scales.

It is well known that the total cross section for the
deuteron-deuteron scattering can be written in the form
opp = 4ony — Aopp, where Acpp is the Glauber correc-
tion term [19], which is proportional to 1/R?, while oy
denotes the total cross section of the nucleon-nucleon
interaction. Intuition suggests that the correlation radius
of the order of R stems from the production due to the
Glauber correction term (see Fig. 1)

The production of two gluons is shown in Fig. 1(a) and
Fig. 1(b), where interference in the case of the generated
identical gluon leads to the correlation function of Eq. (1).
Generally speaking, the inclusive production of two gluons
with rapidities y; and y, and transverse momenta py; and
P> takes the form

© 2017 American Physical Society
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d)’1dy2d2PT1d2PT2
d*c

B dY1d)’2d2PT1d2PT2

(identical gluons)

(different gluons)< 1 + C(R.|p71 —PT2|))' ()

squared of diagrams interference diagram

In Eq. (2) R, denotes the correlation radius (correlation length), and in the form of the correlation function, we anticipate
that the production of two-parton showers leads to the double inclusive cross section, which does not depend on rapidities

y; and y,.

II. BORN APPROXIMATION

A. Bose-Einstein correlation function with radius « Rj,

The simplest contribution in the Born approximation of perturbative QCD is shown in Fig. 2. The second diagram
describes the interference between two-parton showers shown in Fig. 1(b).
The analytical expressions take the following forms. For the diagram of Fig. 2(a), we have

d’o
dy, dyzdzprl dzprz

2 2 2, o, (Iptkr.—kr +QOr) _ Ip(kr —pri.—kr +pr1 + QT))
°</d QTGD(QT)/d kd ZT( 12k —p,)2 L, (kr.pri)Ty(—kr + Qr.pr1) (—k+ Q) (—k +p1 +0)2

(Fig.2(a))

Ip(ly, =y — Qr) Ip(ly —=pra, —lr +pro — QT))
X | ————=0,Ur,pr2)T, (=l — Or,p . 3
(Bt Ttmantc - 0ror) R 0 O ?
The interference diagram of Fig. 2(b) takes the following form
d
—— (Fig2(b))
dy\dy,d”pr1d~pra
0</6172QTGD(QT)G13(QT +Pr.12)
Ip(ky, =k + Or) Ip(ky —pr1, —kr +pr1 + Qr)
xd2kd21<PT L T, (kr.pr)T, (<17 — Qr,
R ey L U R B e e B
IP(7T7 _7T - QT) Ip(ly —pr2.—lr +Pr2 — Qr)
< Bli-p, W rmRmen T ERER (k4 Q)3 (<k +py + Q)3
The Lipatov vertices I, have the forms (see Ref. [18] for example)
1 1
Uy (kr, pr1) = — (kipri —krp7); U, (kr1, pr2) = —— (kP12 — k1 p7,) (5)

T1 P12

FIG. 1. The two-parton-shower production that contributes to the Glauber correction term for deuteron-deuteron scattering. The wavy
lines describe the exchange of the BFKL Pomeron. Figure 1(a) and Fig. 1(b) show two diagrams that can interfere for identical gluons.
The dashed lines show the cut BFKL Pomeron [20].

014034-2



PERTURBATIVE QCD AND BEYOND: AZIMUTHAL ANGLE ...

and
k2 k -p 2 k2 k -p 2
Fﬂ(kTspTl)FM(le’pTZ): Tl( T2 2) 7( Tl2 T1)
P Pri
kzk2
o T‘Zpﬂp%z

where pr 1, = pri —pr, and kyy = ky — Qr. One can see

k<0 0 k
F,M(kT7pT1)Fﬂ(leﬂpT2) = Tk%‘]( +O< T1>>
P2 P12

kr<< QT

Fﬂ(kT’pTl) y(krl,Prz) -
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Gp(Qr) is equal to
Gol0r) = [ Erer @ ()

where r denotes the distance between the proton and
the neutron in the deuteron. The impact factors
[Ip(ks,—k; + Q7) and others in Eq. (3) and Eq. (4)]
determine the interaction of two gluons with the nucleon,
and their typical momenta are about 1/Ry.

From Eq. (8) we can see that typical QO « 1/R},, where
Rp is the deuteron radius. In other words, Q; [and
|Q7 4+ pr.12| in Eq. (4)] turns out to be much smaller than
the values of k7 and [, which are determined by the size of
the nucleon (Ry) kr =y ~1/Ry > Q7(|Qr +pr.12l) ~
1/R, through the impact factors Ip in Eq. (3) and
Eq. (4). The reason is that Rp > R)y. Neglecting Q7 and
Pr.12 in comparison with k7 and /7, we can simplify Eq. (3)

(7) " and Eq. 4) to the form
|
d*c d*c
Fig.2(a)) + Fig2 —b
d)’IdY2d2PT1d2PT2( (®) dyld)’2d2pT1d2PT2( )
1 1

d2 G2
Prlprz/ QT{ p(Qr) + 2(N2-_1)

Gp(Q71)Gp(Qr +PT,12)}

/afzkdle<IP kT’ kT)IP(kT

—pri,—kr +PT1)>

ki (k—P1)2

5 (zp(zr, —Ip)Ip(ly —pra. Iy +pn>) (9)

l; 7l = Pz)

In Eq. (9) we consider p,

= p, for the expressions in (...

). Note that the interference diagram of Fig. 2(b) contributes

when the polarizations of the produced gluons are the same, this fact is reflected in Eq. (4) by the same indices of Lipatov

vertices. In Eq. (9) we replace

Uy (kr.pr)Uu(=lr = Qr.pr1)Uu (. p12)Uu (k7 + Q7. P12)
1
-5 Wk, pr)Uyu(=kr + Qr.pr2)U (I, pr2) U (<lr — Q1. p11) (10)
Or, Pr. 12kt T 1
(kT’pTl) (_kTvPTl) (lT’pTZ) (—IT,PTz)
1 1
:Emk%(k—l’l)%l%(l—l’z)%- (11)

Factor 1/(N? — 1) in Eq. (9) reflects that identical gluons
have the same colors (N, is the number of colors).

Finally, the correlation function C(R.|p7| —pr2|) in
Eq. (2) is equal to

C(Rppr12)
B 1 fJZQTGD(QT)GDGQT +PT,12|) (12)
C2(NZ-1) [ @*0:G(0r) .

B. Bose-Einstein correlation function
with radius « Ry: Glauber corrections

In this subsection we show that the Glauber corrections
due to the interaction of one nucleon with two nucleons of
the deuteron, shown in Fig. 3, lead to a correlation radius of
the order of Ry . In the diagram of Fig. 3(a), O is of the order
of 1/Rp; therefore, it is much smaller that the typical values
of k; and [, which are of the order of 1/Ry. Hence, the
contribution of this diagram is similar to Eq. (9), namely,
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(a) (b)

FIG. 2. The double inclusive production of two gluons with rapidities y; and y, and transverse momenta p;; and py, in the Born
Approximation of perturbative QCD. Figure 2(a) corresponds to the square of the diagrams of Fig. 1. The interference diagram of
Fig. 2(b) gives the correlation function C(Rp|pr —prs|) of Eq. (2). The solid lines denote nucleons in the deuterons, which are
specified by double lines.

Ip(k, I, -1 —-Qp—k +Qy)

FIG. 3. The double inclusive production of two gluons with rapidities y; and y, and transverse momenta py; and py, in the Born
Approximation of perturbative QCD. Figure. 3(a) corresponds to the square of the diagram of Fig. 1. The interference diagram of
Fig. 3(b) yields the correlation function C(Ry|pr1 —pr»|) of Eq. (2). The solid lines denote nucleons in the deuterons, which are
illustrated by double lines.

d*c ) approach to /p has been discussed in Refs. [4,21], and we
dy,dy,d*pri1d*pr (Fig.3(a)) will return to this below. For the moment we replace the
nucleon with the state of a heavy quark and antiquark
X —— / d*Q0;Gp(0Q7r) (onium) to study the key features of the impact factors
PriPr2 in the framework of perturbative QCD (see Fig. 4).

% / Pler iyl (kys Ly —Ly, —kp) Introducing the form factor of the onium in the form
% Ip(kr —pri,—kr +pr1) I p(ly = pra. =lr +p12) . F(QT) = /erei%Q1"’|\Ifonium(r) 2 (13)

ki (k —p1)3l3(1 - p2)7
we can express the impact factor in the form

Unfortunately, we cannot treat the impact factors /p
theoretically in the case of nucleons. The phenomenological Ip(kr, —kr + Q1) = F(Qr) - F(2kr + Qr); (14)
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FIG. 4. The impact factors for onium for Ryky > 1, Rylr > 1, and RyQ7 > 1. Figure 4(a) describes the interaction of two gluons
with the onium. Figure 4(b) shows the impact factor for the interaction of four gluons with the onium.

Ip(ky,lp,~lr + Qr.—kr + Q)

=1+ F(2Q7)+ FQ2(ky +1r)) + F(2(ky =17 - Q7))
— F(2kr) = F(2(kr — Q7)) = F(2r) — F(2(Ir + Q1))
(15)
In Eq. (13) the impact factors are equal to
Ip(kr,—kp) = 1= F(2kg);
Ip(lp, =ly) = 1= F(2ly); (16)

Ip(ky,lp, ~ly, —ky) =2+ F(2(ky +17)) + F(2(ky — I7))

The integration over kr and /7 leads to typical values of
kr ~1/Ry and Iy ~1/Ry, and it does not generate
azimuthal angle correlations. Indeed, this is clear from
the following features of Ip from Eq. (17):

Ryky < 1,Rylr < 1; Ip(ky, 1y, =1y, —ky)
Ip(ky, Iy~ —k7)
IP(kT’lT’ lTa_kT)OCZ%’
IP<kTalT7 lT7_kT)

K212,

RNkT <<1,RNZT >>1, ock%’

RNkT > 1’RNZT < 1,

RNkT>>1’RNlT>>1; (18)

In the diagram of Fig. 3(b) one can see that
Gp(Qr —p1») regulates that |Q —py»| is of the order of
1/Rp. This means that we can put Q; = p,, in all parts of
diagrams, since the typical values of k; and [; are about
1/Ry > 1/Rp. Therefore, the diagram of Fig. 3(b) can be
reduced to the form

~ F(2ky) - F(2(kp))
— F(2ly) = F(2(I7)). (17)
|
d*c . 1 ) ~
dy dy,d”prd® pra (Flg.3(b))0<m/d QrGp(Qr=p2)

X / dkyd?lplp(ky Iy, ~ly —pra.—kp +p12)Ip(ky —pri.—kr +p1r1) I p(ly =P12. —lr +P12)

(l—k+P12)%P2Tl

1
< -p1)7 (l+P12)2 "

1
ez (I —I’z)%> _k%(k —p)7(I=p2)}(I+p12)?

d

:

The largest contributions to the integrals over k; and

4
4

[r lead to the logarithmically large terms, which are
proportional to In (p3, R%) In (p%,R%). These contributions
stem from the terms
1/((k=p1)7)* and to 1/((I-py)7)*.
kinematic region in the integration over k; and Ir,
where k;y —pri=k; -0 and Iy —pr, =1, - 0. For
small k; < prp and [, < pry, the product of curly brackets
is equal to

1 (I-k+p1)7p7,
+ 2] 12 2 2 2 (" (19)
I-p))7 (k —pi)i Gk=p)7) GI=py)i(k—p)7(k—p12)
|
1 {1 n (k1—12)2} 1 {1 ! (k1-12)2}
TR RE JpR G R KB
2 . .
which are proportional to <k1 122 : after integration over angle . 3 — (20)
We consider the pTlpTZk 5 PPkt

For Ryk; < 1, Ip(ky —pri,—kr 4+ pri) < ki, and the
integral over k; gives a small contribution of the order of
1/(R3 p2%,). Recall that we can use the perturbative QCD
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T >
1

I
Ip(k, 1= 1+ Qr,~k-Qy) = <5 g—kf@% % o

FIG. 5.
the onium-bound state.

approach only if Rypy; > 1 and Ry pz, > 1. Therefore,
the main contribution occurs from the region of integration
(1/R%) < k; < pry and (1/R%) < I; < pry. Integration
in this region leads to the contribution

d*c
dy, dyzdzpn dzprz

1
“;r;rhﬂp%R%ﬂnﬁﬁﬂﬁJ/lﬂQﬂiﬂQr—Pu)
TIFT2

(Fig.3(b))

X Ip(pr1:P12: —P11> —P12)- (21)
Therefore, from this kinematic region the correlations are
determined by the impact factor. Using the impact factor
given in Eq. (15), we see that

Ip(pr1-P12:P11:P12) =2+ F(2(P11 +P12))
+F(2pr12) —2F(2p71) = 2F (p12).
(22)

This function is symmetric with respect to ¢ — 7 — ¢
(P71 — —Ppr1), and with such an impact factor the Born
approximation produces only v, with even n, as was noted
in Ref. [2,3]. However, this conclusion is based on the
impact factor of Eq. (15). Equation (22) shows that this
impact factor leads to py o ~ 1/Ry.

~Ipk L, =1-Qp-

Q0000000
QQ000MQQ

—k+‘QT§ g

-I-Qp | -1-Qp

The impact factors for onium for Ryky > 1, Ryly > 1,and RyQr < 1. The dashed lines denote the Coulomb gluons that form

Note that the simple expression of Eq. (15) (see Fig. 4) is
written for sufficiently hard gluons. For small values of
Or = pr.12, we need to add the first diagram of Fig. 5, in
which there are two gluons with large transverse momenta
(about py; or prp) but small Q7. The final expression for
the impact factor takes the form

15 (ky lr, =7 + Qr, —kr + Qr)
= Ip(ky, =k + Qr)Ip(ly, ~lr — Qr)
+ Ip(ky, Ly, =1y + Qr. ks + Q7).

Eq. (15)

(23)

The first term in Eq. (23) generates a correlation function
which is proportional to F2(2py ,).

Summarizing, we see that the Born approximation of
perturbative QCD generates a correlation function which is
determined by the impact factor of the nucleon, that the
typical correlation length is about Ry, and that, even for the
unrealistic perturbative model of onium, this correlation
function is not symmetric with respect to ¢ - 7 — ¢. We
will consider the more realistic case below in the leading
log approximation (LLA) of perturbative QCD. However,
we would like to stress now that the correlation function
stems from the large nonperturbative distances of the order
of the nucleon size.

k +Qy)

Ip(k P, 1=p,, = 1-p,+ QT,—k +p, + QT)

FIG. 6. The double inclusive production of two gluons with rapidities y; and y, and transverse momenta py; and py, in the Born
Approximation of perturbative QCD for the nucleon-nucleon interaction. Figure 6(a) corresponds to the square of the diagrams of Fig. 1.
The interference diagram of Fig. 6(b) yields the correlation function C(Rp|pr; — pr2|) of Eq. (2). The solid lines denote nucleons in the
deuterons, which are illustrated by double lines.
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C. Bose-Einstein correlation function
with radius « Ry: Nucleon-nucleon
interaction

The correlations with R. = Rj, are typical for nucleon-
nucleon interaction (see Fig. 6 for the Born approximation
of perturbative QCD). However, we will consider them
below for the general case of the production of two-parton
showers since we prefer to use a more phenomenological
and realistic approach for the impact factors /p than
we explored above, replacing the nucleon with the onium
state.

d? 2 1
 (Fig7) = < ”“S)
dy,dy,d”pr1d”° pr, C PT 1PTz

PHYSICAL REVIEW D 95, 014034 (2017)

III. PRODUCTION OF TWO-PARTON
SHOWERS

A. RC O(RD

In this section we consider the general case of the
production of two-parton showers shown in Fig. 1. In
the leading log approximation of perturbative QCD, the
structure of a one-parton shower is described by the
Balitski-Fadin-Kuraev-Lipatov (BFKL) Pomeron [22,23].
In the leading log approximation of perturbative QCD the
Born diagram of Fig. 2(a) can be generalized to Fig. 7. The
contribution of this diagram can be written as follows:

/ P0:G3(0r)

( dsz‘/’G Y = yiikr, —kr + Qr) g (yi:kr —pri. —kr +PT1+QT)>

X (/ dle‘ﬁg(Y—)’z;lT,—lT—

0r)pX(yaily —pra. =y +pra — QT)>’ (24)

where ¢¥(y,kr, —ks + Qr) denotes the probability to find a gluon with rapidity y and transverse momentum &, in the
process with momentum transferred Q7. In Eq. (24) @5 = agN./z with the number of colors equal to N.. ¢¥ are the

solutions of the BFKL evolution equation

Opy(y. kr. —kr + Or) _ - /dzk/T

ag

Jy 2

K(Qr: k., ki) (v. k' v.—k'r + Qr)

— (0G(Qr — kr) + wg(kr)) g (v.kr. —kr + Qr). (25)

where

K(Qr. kr. ky) =

(Qr —k7)?

(Qr —K7)?

_ (kp—Ky)? }
KHQr —k'r)?

%

|

Q
000000000

(000000000

1
|
|

(000000000

Q

00000Q000C00000O000T

=
J
o
o
=
=
=
o
=
g
o
=

0000

—
|
}

000000Q000000Q00

Eé

Q00000000000 0000Q0000Q 000000Q

|

|

[9]

-
090090090008 0000

) 000000000

0000 000000000%00000

QOVOR00000000000000Q000 Q009000000

A

|

(26)

FIG. 7. The double inclusive production of two gluons with rapidities y; and y, and transverse momenta p; and ps, for the exchange
of two BFKL Pomerons which are denoted by wavy lines. This diagram is the LLA generalization of Fig. 2(a). The solid lines denote

nucleons in the deuterons, which are indicated by double lines.
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The typical momenta in ¢1(\;’ are about 1/Ry or larger, (about pr; (pr2), or Q,, where Q; denotes the saturation scale.
Bearing this in mind, and noting that Qr~1/Rp < 1/Ry, we can put Qr =0 in the arguments of .
This simplifies Eq. (24), reducing it to the following expression:

d*c . d*c d*c
5 >— (Fig.7) = 5
dy,dy,d”prid°pr» dy,d”pr) dyzdzprz

« [ @0iGh(on). (27)

The diagram of Fig. 2(b) in the LLA simplifies the expression for the exchange of two BFKL Pomerons, but with more
complicated vertices. Using Eq. (10) and considering @g(y; —y,) < 1, we can write this exchange in the form that is
represented in Fig. 8, and its contribution has the following form:

d’o
dy, dyzdzpn dszZ

1 2raq\?
=§< Zas> /dZQTGD(QT)GD(QT -Pr.12)
F

(Fig.8)

X </ Py dp¥(Y — yisky, —kr + Or)U,(kr, pr1)Tyu(—kr + Qr. pr2) e (vaskr —pri. —ky +pra + QT))

S (/ dzlrff’[c\;](Y —yilp, =lr — QT)Fy(lTv pTl)Fﬂ(_lT - 0Or, Prz)¢g()’z§lr =P, —lr +pr1 — QT))' (28)
d*c (Fig.8)

Since Qr ~1/Rp < 1/Ry as well as |Qr —pr.ia| ~ dy dy,dpdpry 1g.
1/Rp < 1/Ry, we can take both Q7 =0 and py, =0, e g
but it 1s not sufficient to reduce Eq. (28) to Eq. (12). == dzo y d; /d2QTGD(QT)GD(QT +Pr12)-
In addition, we need to assume that ag(y, —y,) < 1. Y1d=Pr1ay2d"Pr2
Making this assumption, we can replace y, in (29)
g (vaskr —pri. —ky + pra + Qr) with y;, and Y —y, in
dN(Y = yi;lp, =l — Qp) with Y — y,. After these changes, Eq. (27) and Eq. (29) lead to the same correlation function
Eq. (28) can be reduced to the following expression: [C(Rppr.12)] Eq. (12) as in the Born approximation.

3 Y
J
3 9 g
! 0000000000
o a o
=,
STTTORETTTTTOTT T
2 o g
L= 4 o
o [
3
( )RZZEE??
3
Y,.P.) §
’ Joovgeg ’m;%g -k+Qy
2 | 9 o
9 3 J
g g g (y L, p )
=, o
2 ATTTTTTTIT 2 T2
9 d d
gm
o (=1
o o
9 =
b,
HTTTOY
3
g — O
=
(=]

FIG. 8. The double inclusive production of two gluons with rapidities y; and y, and transverse momenta p; and py, for the exchange
of two BFKL Pomerons, which are denoted by wavy lines. This diagram is the LLA generalization of Fig. 2(b). The solid lines denote
nucleons in the deuterons, which are represented by double lines.
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B. Rc X RN

In LLA the diagrams of the Born approximation of Fig. 3 can be generalized in the same way as has been discussed
above. Figure 3(a) takes the form of Fig. 9, while the interference diagram of Fig. 3(b) becomes Fig. 10.
The contribution of the diagram of Fig. 9 can be written as follows:

Ao

dy1d)’2d2PT1aﬂPT2

. 27[&5‘)2 1 / 0 2
Fig.9) = d N G
(Fig.9) < Cr P2T,1P%2 OrN(Qr)Gp(0r)

X (/ Ly (Y — yiskr, —ky + Qr)py(yi:ky — pri, —kr +pri + QT))
X (/ dlefﬁg(Y —yasly, =l — QT)fl%[()’z;lT —pr2,—lr +pr — QT)>9 (30)

where N(Q7) denotes the integral over all energies of the imaginary part of the Pomeron-nucleon scattering amplitude. This
amplitude was introduced in Gribov’s Pomeron calculus [25], but it has been proven that we can use this formalism in LLA
of perturbative QCD [26]. N(Q7) has the following general form (see Fig. 11):
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FIG. 9. The Mueller diagram [24] for the double inclusive production of two gluons with rapidities y; and y, and transverse momenta
pr1 and pp, for the exchange of two BFKL Pomerons, which are denoted by wavy lines. This diagram is the LLA generalization of
Fig. 3(a). The solid lines denote nucleons in the deuterons, which are illustrated by double lines.
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FIG. 10. The Mueller diagram for the double inclusive production of two gluons with rapidities y; and y, and transverse momenta py;
and p, for the exchange of two BFKL Pomerons, which are denoted by wavy lines. This diagram is the LLA generalization of Fig. 3(b).
The solid lines denote nucleons in the deuterons, which are illustrated by double lines.
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N = g(0r) +Z (@it + [ S dOw 0 = 0L HGsw(er ) 6D

elastlc scattering

diffraction in low masses diffraction in high masses
where Gsp is the triple BFKL Pomeron vertex, and {...} denotes all transverse momenta which we need to integrate
over. yy = In (M?/M3).

Figure 11(b) shows how all contributions correspond to the onium case, where we can use perturbative QCD for
theoretical estimates.

Since Q7 ~ 1/Rp < 1.Ry, and all other transverse momenta in Fig. 9 are either of the order of 1/Ry or larger (of the

order of py(,pr, or O, where Q; is the saturation scale), we can safely put Q7 = 0 and reduce this contribution to the
factorized form

d*c i d*c dc
(Fig.9) = 5
dyldyZJZPTldszZ dhdzl’n dy,d”pr>

N(QT = 0)/d2QTGD<QT)* (32)

The contribution of the relevant diagram, which is shown in Fig. 10, can be written in the form

d’c
d)’1d)’2d2PT1d2PT2

1 2nog)\?
= 5 < Zas> /dZQTN(QT)GD<QT _pT,IZ)
F

(Fig.10)

X </ k(Y = yiskr, —ky + Qr)T u(kr, pr)Tu(=kr + O, pr2) PR (vaskr —pri. —ky +pra + QT))
X (/ dzlrébg(y —yilp, =y — QT)Fy(lTv pTl)F;z(_lT - 0r, Prz)ﬁblc\;/()’z;lr =Pr2s =y +pr1 — QT)>~ (33)

Integration over Qr leads to Qr —pri2» ~ 1/Rp < 1/Ry; therefore, as in the Born approximation, we can put
Qr =pr15. In Eq. (33) we have two sources of py i, behavior: N(py.1,) and ¢¥. Replacing Q7 = pr 15, we obtain
d’c
dy dy,d* prid® pra

1/2
= <Z,ZS) /szTN(pT.n)GD(QT —-Pr.12)

(Fig.10)

1
X (/ k(Y — yiskr,—kr +prio) 2

7kr _pT,12>2(kT —Pr.i
% {(kr _pT,IZ)Q(kT —PT,1)2 k%(kr —Pr. —PT.12)2 2 2 k%(kr —sz)z})
p%z P Plrzp%.z

& ¢ (y2iky —pri.—kr +pr1)

+ 1 —Pri2—Pr12

1
1N (Y =y, 1, 1, — N(yyily —prs, —1
X </ 9 ( Yistr, —bt PT,12>12T(IT +PT,12)2(IT —PT,2)4¢G(y2 T = P12 —lr +P12)
(r +pr2)*(r —pra)* | Gy —pro)? G(lr +pr1a)?
X{ 7 + L 1 - 2T,12_I72T,12 L T 2 . (34)
P12 P12 Pm2P72

The products of G,G, are written in Eq. (34) {...} explicitly using Eq. (6), and ¢} is the solution of Eq. (25). Recall that
@Y (kr, —kr + Qr) vanishes both at kz — 0 and k; — Q7 — 0. Since the products of G, vanish at kz —pyy — 0 or
Iy —pry — 0, respectively, we can conclude that the integrals over kr and [/ do not have large contributions at k7 of the
order of py; and at I; of the order of py,.

In the appendix we show that the typical value of Q7 for the BFKL Pomeron ¢X(Y; k., kr, Q) is determined by the
smallest value of transverse momentum Q7 ~ min{k;y ,ky}. In our case this means that Q7 = pr.o ~ 1/Ry > pr; and/
or pra.
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Therefore, we can rewrite Eq. (34) as follows:

d? 1 2nag)\?
e (Fig.10) = < ”“S)
dy,dy,d”prd°pr) Cr

P%l P%z

PHYSICAL REVIEW D 95, 014034 (2017)

/dZQTN(pT,IZ)GD(QT -Pr12)

X (/ dszﬁb](\;](Y_y1§kT’_kT)¢Z(YZ;kT —Pri,—kr +PT1)>

X </ dleéb](\;/(Y -yily, _lT)(l)](\;/(yZ;lT - P12, Iy +PT2)>- (35)

In Eq. (35) we introduce ¢ (k,,—kz) = (1/k3)p¥ (k. —kr)
[Eq. (34)]. Comparing Eq. (32) and Eq. (35), one can see
that the correlation function is equal to

C(Rzzvl’%,lz) = N(P%z) (36)
for as(y; —y2) < L.

The three terms of N(Q7) are shown in Fig. 11(a). The first
contribution N(Q7) = ¢*(Qy) can easily be evaluated from
the differential elastic cross section, which is proportional to
g*(0O7). Recall that the BFKL Pomeron does not generate the
shrinkage of the diffraction peak seen in the experimental
data. This indicates that the exchange of the single BFKL
Pomeron is not sufficient to describe the high-energy
amplitude, and we need to use a more phenomenological
approach to describe the elastic contribution to the correla-
tion function (see Ref. [4], in which we tried to describe these
correlations using a particular model for high-energy scatter-
ing, which is based on CGC/saturation approach).

For the onium, g(Q7) can be calculated [see Fig. 11(b)
and Eq. (B5)] in the following way:

9(Qr) = Vo™ (Qr)
= / &Kyl p(kr, =K't + Qr) VP (K7, Qr)

- / Ky (F(Qr) = F(2k'r = Qr)VY (k. Or ),
(37)

Iow mass dlffractlon é

9(Qn

QT) g?—’—( —

elastic contribution

(a
large mass diffraction
ke It T
£ & = 1 &7 + £ A1 £ =
Qr Qr Qr Qr
(b)
FIG. 11. The structure of the amplitude N(Q7). Figure 11(a)

shows the BFKL Pomeron-nucleon interaction, and Fig. 11(b)
shows the BFKL Pomeron-onium interactions. The blob shows
the triple BFKL Pomeron vertex which is the same for both
figures. The dashed vertical lines describe the Coulomb gluons
that create the bound state: onium.

|

where VP' is determined by Eq. (B4). In Eq. (37)
k. ~1/Ry < kr. Assuming that F(Qr) of Eq. (15) is
equal to 1/(1 + R3,Q3%), we find that at large O, g(RyQr)
decreases as 1/Q7.

The second term of Fig. 11(b) can be evaluated from the
process of diffraction dissociation in the region of small
masses. However, we need to use a model for this term to be
able to extract its Q7 dependence from the experimental data.
For example, we can replace the sum of possible produced
diffractive states with one state, as has been done in Ref. [4].
For the onium state, this term has the following form:

N (Or) :/Jlklr /dzllrlp(k%lrv ~ly +Qr.—kr + Qr)
x VP'(K'7;Qr) VP (I'r; Qr), (38)

where [p is taken from Eq. (15).
Using Eq. (B4) we calculate N (Qr) which decreases

as 1/Q% at large Q.

C.R, x1/Q,

The last term in Fig. 11(a) gives the contribution of large
mass production in the diffraction dissociation process. The
Q7 dependence of this term is determined by the triple
BFKL Pomeron vertex in perturbative QCD (see Fig. 12).
Therefore, this term generates correlations, whose length is

N@Q) — N(Qy) —
= )¢>'Z Y o= )¢>'Z Y
&

FIG. 12. The large mass diffraction contribution to N(Q7), the
source for the correlation length of about 1/Q,. The blue blob
denotes the triple BFKL Pomeron vertex. The red square
indicates the contribution of N(Qr), which includes the integra-
tion over rapidity y’. Figure 12(a) corresponds to the square of the
diagrams of Fig. 1. Figure 12(b) describes the interference term of
these diagrams.

014034-11



E. GOTSMAN and E. LEVIN

determined by the BFKL Pomeron structure, and it is
closely related to the typical saturation momentum Q.

Comparing Fig. 12 with Fig. 9 and Fig. 10, one can see
that the difference is only in the expression for N(Qr),
which has the following form

Nlarge mass diffraction (QT)
= /dy’r/)]é(Y -y 0r =0:qr.47)

x dqrGsp(qr: Ky Iy, Or). (39)

We can obtain the form of G3p in momentum space starting
from the coordinate representation, where the contribution
of the triple Pomeron diagram of Fig. 13 is known [27,28],
as follows:

d*xod?x,d
as/MN( X xoib =Y =)

2 2
x01x02x21
N / .b/ 1 P
X IV | Xgp5 X023 —Exzuy -

1
X N(Xlzl,xz1;bl - Exoz;y' - )’2)- (40)

Introducing [18]

d’c

dyldyZJZPTldszZ

(Fig.12 — b)

PHYSICAL REVIEW D 95, 014034 (2017)

N(xm’ b; Y) — x(z)l /JldeQTeikr.xol—HQrbN(kT’ QT)a

(41)
we see that Eq. (41) can be rewritten in the form
as | d*qtN(qr.q7.Qr =0.Y =)
s qriN\qr. 47, Y1 , y
X G3[F°(q/T; k/T7 l/T’ QT)N(k/T’ kTa QT’yl - yl)
XN( T,ZT, QT’y _yZ) (42)

with
Gip(q7; kr, I7, Or) =4 )<k/ -q += QT>

2) (l/T -q - 5QT>- (43)

In Eq. (39) we use the following notation for

oY =¥ 0r = 05k; ky): Y —y' is the rapidity, Qr is
the momentum transfer of the BFKL Pomeron, k; and kf
are initial and final transverse momenta. Plugging Eq. (43)
into the general expression for the interference diagram of
Fig. 12(b), we see that instead of Eq. (34) we obtain

2
:_<”a5> /d2QTGD Or —prra2 /dy/¢NY V:0r =097, 47)d* g

1 1
X GBFKL _ : : _ , GBFKL ;O;k _ ,k
< (y Y1 Pz T 217712 >k2 (kr PT,12)2(kT -pra)* 02 r=pri-ky)
—Pr, 12) kT Pr, 1) k%(kT —Dr.1 —PT,lz)2 2 2 k%(kT —I7T,12)2
X + 1 - 12~ Pr12 I 2
PTz P Pr2P12
1
X d?1;GBFRL () —y: , Ay GBYKL (v - 0; 1 — ppo, 1
</ Y =yiipriqr+ 217712 Z(lr +pr) (s —pra) (¥2:0:17 = pr2. Iy)
Iy +PT 12) lT pr1)? | Gy —pro)? B(ly +prin)?
x { + i 1 —Pin— P%,lz L 2 : (44)
P2 Pr2Pro
X Y X4 q Y -q
N(Xg1:Xp1:Y =) N(@ ,q;Y-Y)
N(K k Qr;y-y) K PN 1 -Qp y-y)
N(Xo2Xo21y' = Y1) NX51.X51 Y= ¥o) 2

FIG. 13.
vertex.

The triple BFKL Pomeron vertex in coordinate and momentum representations. The blue blob denotes the triple Pomeron
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The main difference between Eq. (44) and Eq. (34) is that
g’y is larger than g ~ 1/Ry. Indeed, the typical value of
gy = O,(Y =) ~ (1/R}) exp (A(Y =), where 1=
@(7¢r,0)/(1 =7.) with y.. = 0.37 in leading order of
perturbative QCD [18].

From Eq. (A16) one can see that each ¢} (Y —)') o
GO PRy = y1) o BN and g (v — y2) o
GO0 =r2)  gince y = % + iv with small v. Therefore,
integration over y’ results in ¥ —y' ~1/w(3,0) « 1/as,
while y' —y, and y' —y, are large (of the order of Y).
Since Y -y <y —y, (Y =y <y —y,), we can use the
factorized formula of Eq. (A15) for ¢X (Y = yi:pris;
q'r _%PT,H’kT) and for ¢IC\;](y/_YI;pT,12’q/T+%pT$12’lT)~
Using Eq. (A15) we find that p;;, will be determined by
the lowest momenta in the BFKL Pomeron with y' — y,,
and it will have the form

1
C(pT,IZ) & /dzq/TI—y(q/T>Vy <‘I/T - EQT’ QT)
1
X Vy (qlT + EQTv QT) ) (45)

where V is determined by Eq. (A12), and Q7 = pr 1. In
Eq. (45) we can puty = % assuming y’ — y, is sufficiently
large that we can neglect v.

IV. BOSE-EINSTEIN CORRELATION FUNCTION
IN THE NUCLEON-NUCLEON INTERACTION

In this section we discuss the Bose-Einstein correlations
in nucleon-nucleon scattering. The Mueller diagrams for
the square of the diagrams Fig. 1(a) and Fig. 1(b), and for
the interference diagrams, are shown in Fig. 14. This differs
from the diagrams that have been discussed above only in
the appearance of the second N (Q7), which reflects the fact
that we do not have small (about 1/Rp) momenta in this

N(@) \

PHYSICAL REVIEW D 95, 014034 (2017)

process. Note that we can use perturbative QCD only if
Pr1 ~ Pr> > 1/Ry. Recalling that the Q7 dependence of
the BFKL Pomeron is determined by the smallest trans-
verse momentum, we conclude that in Fig. 14 the QO
dependence is determined by the function N(Qy). For the
first two contributions to N(Qr) [see Fig. 11(a)], this is
accurate to the order of 1/(Rypy). For the third contri-
bution of the large mass diffraction, the accuracy is about
Q,/pr1, where Q, denotes the saturation momentum of the
BFKL Pomeron with rapidity ¥ — y'.

In spite of the fact that we indicate in Fig. 11(a) the
sources of experimental information on each contribution,
the situation turns out to be more complicated. As an
example, we discuss the elastic contribution. This gives
N(Qr) = ¢*(Qr), where g(Qy) is the Pomeron-hadron
vertex. At first, we appear to be able to extract this vertex
directly from the experimental values of do,;/dt. However,
this is certainly not correct. Indeed, the BFKL Pomeron
cannot explain the shrinkage of the diffraction peak which
is seen experimentally and which gives almost half of the
slope of the elastic cross section for the energy range W =
40-7000 GeV [29]. In the only model [30] for the soft
interaction at high energy that is based on the BFKL
Pomeron and color glass condensate (CGC) approach
[31,32], the effective shrinkage of the diffraction peak
stems from strong shadowing corrections, which lead to an
elastic amplitude that is different from that for the exchange
of the BFKL Pomeron. However, it turns out that the most
essential shadowing corrections originate from the BFKL
Pomeron interaction of two scattering hadrons. Such
corrections do not contribute to the inclusive cross sections
nor to the correlation due to AGK cutting rules [20].

It turns out to be an even more complicated problem to
extract, from the experimental data, the diffraction con-
tribution to N(Q7) in the region of small masses. The lack
of a theory, as well as insufficient experimental data,
especially of the momentum transfer distribution of the

FIG. 14. The Mueller diagram for the double inclusive production of two gluons with rapidities y; and y, and transverse momenta py;
and p, in the nucleon-nucleon interaction. The BFKL Pomerons are denoted by wavy lines. The first diagram corresponds to the square
of the amplitude for two-parton-shower production, while the second diagram describes the interference.
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diffractively produced state with fixed mass, leads to the
necessity of modeling this process. The two extreme cases
of such a modeling illustrate the difficulties: in our model
[30] the rich variety of the produced states were replaced by
a single state, and in the constituent quark model (CQM)
[33] the small mass diffraction stems from production of
the state of free three-constituent quarks. In our model the
typical slope for gg(Q7) « exp (—BQ?%) turns out to be
1/4 from the elastic slope, while in the CQM the size of the
constituent quark is very small.

Taking the above into consideration, the uncertainties in
the large mass diffraction term look small, and for the
triple BFKL Pomeron vertex, both its value and transverse
J

do

d)’1d)’2dzprld2pr2

(Fig.14, interference diagram)

PHYSICAL REVIEW D 95, 014034 (2017)

momentum dependence follow directly from the Balitsky-
Kovchegov equation [31]. Bearing this in mind, we can
write the expression for the interference diagram of Fig. 14
for the large mass diffraction contribution (see Fig. 11). As
we have discussed in this case, Qr~ Q,(Y —)) <
min{pr(pr2), Qs(y' = y1)}s [Qr —Pral ~ Os(Y =) <
min{pz(pr2), Q;(y' = y1)}, and ki ~min{pzi(pr2),
O,(y' =y} (U ~min{pri(pr2), Os(¥ —y1)}). Hence,
we can use the factorized form for ¢§ given by
Eq. (A15) and Eq. (A16).

Finally, the large mass contribution for the interference
diagram takes the form

1 1 27ZC_¥S 2 1
= — d/ N Y— /; :0; s !
2N3_1<CF) p%lp%/ y/¢c( Y5 0r = 0sq.4q7)

1 1
X / dqurdszGBFKL <yl -yi:0r:4'r —50r. kT) / d}’"GBFKL <Y2 -y 0r —Prazkr —pri,my — ) (o _PT,12>>

2

2

1 1
X/dzlrdzm/TGBFKL<)’/—y1§QT,lI/T +_QT’ZT)GBFKL<y2_yH;QT —Praxly _pTZ,m/T+§(QT —PT,12)>

X R (" Or = 0ymy, mfy).

(46)

In the diagram for the square of the amplitude we can put py 1, = 0. Thus, the correlation function with the correlation
length of the order of 1/Q(Y —y’) takes the following form

1 1 N

C(pr.i2/0Qs) = IN2Z1D’ (47)

where
N:/JZQT/dy//¢g(Y_y/;QT:O;QqulT)
1 1
X/qulrdszGBFKL <y/_y1;QT;qlT_§QT7kT> /dyﬂGBFKL ()’2—Y";QT —PT,12;kT _pT17m/T_E<QT —PT,12))

1 1
X/dledzm/TGBFKL()’/—yléQT’qlT +2QTJT>GBFKL()’2—)’”§QT —PT,12§IT _pT29m/T+§(QT _pT,IZ))
X P (y"s Qr = 0ymy, mfy) (48)
and
D—/JZQT/dy//(pg(Y_y/;QT—O;QN’q/T)
2 2 N / / 1 I N " / 1
x [ d qrd-krdg |y _yl;QT;qT_EQT’kT A" PG\ y2 =" 0r —pri2skr _pThmT_EQT
1 1
X /dledzm/Tfﬁ]c\;] ()’/ -y 0r.q'r + EQTv ZT> ¢1c\;/ <)’2 =" Qpilp,my + EQT) fi%()’”? Or = 0;my, mlr) (49)

The rather long algebraic expression of Eq. (48) and Eq. (49) can be simplified using Eq. (A17), and they take the
following forms:
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, Vi
N = / d*Qr / dy' 6O g (Y = V'3 Or = 0sqy. ) =

PHYSICAL REVIEW D 95, 014034 (2017)

(qlT’ QT - %pTJZ)V%(q/Tv QT + %pT.lZ)
Q7 = 3712|107 + 3P7.12]

« / dy" e 0O LYy O = 03y, 1)

, Vi
D= / d*Qr / dy' O g (Y = V' Or = 05 qy. ) —

Vi
X/ dy" GO U (v Qr = i ly. 1) =

V. as(y; —y2) > 1

All our previous estimates were performed for small
rapidity difference a@g|y; —y,| < 1. In this section we
discuss large rapidity differences (a@g|y; — y,| > 1). For
simplicity, we consider only correlations with the typical
length of the order of Rp. In other words, we discuss the
generalization of Fig. 7 and Fig. 8 to the case of large
Y12 = |¥1 — ¥2|. This generalization is shown in Fig. 15 for
the interference diagrams. The new features here are that at
rapidity y| < y;, we need to emit an additional gluon and
integrate over both its rapidity (y}) and its transferred
momentum (p%,). Indeed, without this emission the ladder
between rapidities y| and y, in Fig. 15(b) will be in the
octet state of color SU;. The main idea is that the principle
contribution stems from p’.; < pr;. In this case the BFKL
Pomeron between rapidities y] and y, has a momentum
transfer which is equal to pz ;. After emission of two extra
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Vi( T,QT;‘ZT/Z( - Q1) , (50)
(a7 QT)V%(‘I/T’ 0r)
07
(I7.@r)Vy(I7. Or) ‘ (51)

03

[
gluons with rapidities y, and y,, we obtain that the lower
BFKL Pomeron has momentum transfer pr,, as in the
right side of Fig. 8. In this diagram Q; « 1/R}, and can be
put equal to zero in all parts of the diagrams, except G(Q7)
and G(Qr —pr.12)-

First, we need to integrate over p’,. The vertex of the
emission is shown in Fig. 16, which can be written as

_ 1
ol (kr.pr)U,(I7.p11) e L, (k7.pr1)
T T

xT,(l7.pr1) P (52)

with k7 = ky —pry and k7 = ki —ppy =kr —pri —pry.-
Plugging in Eq. (5), Eq. (6), and Eq. (26), one can see that
Eq. (52) takes the form

FIG. 15. The double inclusive production of two gluons with rapidities y; and y, in the case of large |y, — 5| ( @s|y; — 2| > 1) and
transverse momenta py; and p, for the exchange of two BFKL Pomerons which are denoted by wavy lines. This diagram is the LLA
generalization of Fig. 8. The solid lines denote nucleons in the deuterons, which are illustrated by double lines. Figure 15(a) describes
the emission of extra gluons with rapidities y; > y; > y,. The ladder in Fig. 15(b) represents the BFKL Pomeron with the momentum

transferred pry + p, & pry for pl; < pry (see the text).
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k/2 l/2

’ <<kl‘(l’.) K ? 1
Pry<<kplly 2&5/ PT1 |: .

PT1

min{k%..l7. } 42’
— 2@} / P10 K (e
r' Tl

Note that the term [..

{kz E _ P%l
K212

P
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o (8-

p/%‘l k//%w l//% k”%l//%

r-h-th)
K212 TR

lTvaak,T)‘ (53)

.] is the same as in Fig. 8 and K(k; — I, ky, k) is given by Eq. (27).

Finally, we obtain the following expression for the interference diagram of Fig. 16:

d*c

dy, d)’2d2PT1 dszZ

(Fig.15 — b)

2
:2( ﬂas) /JZQTGD 0r)Gp(Qr —Pr.12 /dzkr/d%T(f)N(Y yiskr, —=kp)pR(Y — yi;lp, —17)

min{k}..l}.} y
x/ /“dy’d”“K(k Ly kp /

/mm{qT amy} d pT2 K(q —my,q q/)
T-9T-49T

PT2

X /JZCIT/dzmTGBFKL(yll - yo:prskr —phar +P/Tz)GBFKL(y/1 = Y55 =pri;ly —pr,my +phy)

X N (vasqr —Pr1. —qr + Pr2) PN (y2imy, —my).

In Eq. (54) we put Qy =0 everywhere, except in

Gp(Qr) and Gp(Qr —pri2), since Qr ~1/Rp < all
other momenta. At first Eq. (54) appears to give a cross
section which is suppressed as @} in comparison with
Eq. (28). However, the integration over y| and y) leads to
1/@2 contributions, resulting in a cross section of the order
of @. One can also see that the cross section does not
depend on the rapidity difference y;, for the large values of
this difference.

The generalization to other cases, which we have
considered above, is straightforward, and we do not discuss
it here.
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FIG. 16. The part of the diagram of Fig. 15(a) with the vertex of
emission of two gluons.

(54)

VI. CONCLUSIONS

A. Comparison with other estimates
in perturbative QCD

The first estimate of the azimuthal correlations due to the
Bose-Einstein correlation in perturbative QCD was per-
formed in Ref. [2] (see also Ref. [3]). The diagrams that were
considered in these papers are shown in Fig. 17(a). The
observation is that these diagrams give rather strong azimu-
thal correlations, but they are symmetric with respect to ¢p —
7 — ¢ and only generate v, with even n. The general origin
of this symmetry was discussed in section II-B for slightly
different diagrams. In Refs. [2,3] the O dependence was
neglected, leading to § function contributions which were
smeared out by Q7 dependance with QO ~ 1/R, where R is
the size of the interacting dipoles in Fig. 17(a).

Since Fig. 17(a) describes the production of two identical
gluons in the dipole-dipole amplitude in the Born approxi-
mation of perturbative QCD, these diagrams are respon-
sible for the azimuthal correlations in the one-parton
cascade shown in Fig. 17(b). It is worthwhile to mention
that the diagram of Fig. 17(a) leads to a contribution which
is proportional to exp (—(3,0)y;2) and describes the
correlations that decrease for large y;,. Therefore, only
for a)( ,0)y;o < 1 can we consider this diagram as a
source of correlations which are independent of y;,.

Taking into account the emission of gluons, we can
generalize the diagram of Fig. 17(a) to the diagram of
Fig. 18. We have considered this diagram above and have
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FIG. 17. Figure 17(a) is taken from Ref. [2] and describes the correlation in a one-parton shower. These correlations are shown in
Fig. 17(b) in terms of gluon production in the single parton shower.
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0

FIG. 18. The generalized diagram of Fig. 17(a), taking into
account the gluon emission (two-parton-shower contribution).

shown that there is no symmetry with respect of ¢ — 7 — ¢
in such diagrams. Therefore, we conclude that the sym-
metry ¢p — 7 — ¢ is a feature of the azimuthal correlations
in the one-parton shower in the Born approximation of
perturbative QCD.

B. Summary

In this paper, we found that, within the framework of
perturbative QCD, the Bose-Einstein correlations due to
two-parton-shower production induce azimuthal angle
correlations with three correlation lengths: the size of the
deuteron, the proton radius, and the size of the BFKL
Pomeron, which is closely related to the saturation momen-
tum (R, ~ 1/Q;). These correlations are independent of the
values of rapidities of produced gluons (long range rapidity
correlations) and have no symmetry with respect to ¢ —
7 — ¢ (pr; = —pry)- Therefore, they give rise to v,, for all
values of n, not only for even values.

We reproduce the results of Refs. [2,3], which show this
symmetry in the Born approximation of perturbative QCD.
However, even in the Born approximation, this symmetry
depends on the amplitude of the gluon-nucleon interaction
at large distances of about the nucleon size; therefore, it
inherently has a nonperturbative nature. Replacing the
nucleon with an onium (the quark-antiquark bound state
of heavy quarks), we see that symmetry ¢ — 7 — ¢

(P11 = —pr1), does not hold for distances of the order
of the size of the onium.

We demonstrated that the azimuthal correlations with the
correlation length (R,.) of about the size of the deuteron and
the size of nucleon stem from a nonperturbative contribu-
tion. Further, their estimates demand a lot of modeling due
to the embryonic state of the theory in the nonperturbative
region. However, the correlations with R, ~ 1/Q, have a
perturbative origin and can be evaluated in the framework
of the CGC approach.

We showed that the two-parton-shower contributions
generate long range rapidity azimuthal angle correlations,
which intuitively have been expected. In other words, we
demonstrated that the azimuthal angle correlations do not
depend on y;, =|y; —y,| for large values of y, (@sy;» > 1).
We illustrated that the correlations of Refs. [2,3] actually
describe the correlations in a one-parton shower and can be
viewed, as they are independent of the rapidity difference
only in the narrow rapidity window agy;, < 1.
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APPENDIX A: Oy DEPENDENCE
OF THE BFKL POMERON

The impact parameter dependence of the BFKL
Pomeron is well known [23], and it has the following
form for the scattering of two dipoles (7; and r,) at impact
parameter b [23,34]:

d
Np(ry,r;Y,b) :/%ew(y‘o)YHy(W’W*)’ (A1)

Tl
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where
o(r.0) = as(2y(1) —y(y) —w(l —7)). (A2)
and where y(z) is the Euler y(z) = dInT'(z)/dz (digamma
function) (see Ref. [35] formulas 8.360 — 8.367).
H (w,w*)
_ =3 , \
= 2 {bwW W F(y,7, 2y, W)F (1.7, 21, w")
(r(1=7))?
+ by W W F(1 =y, 1= 7,2 =27, w)
X F(l=y,1=7,2=2y,w")} (A3)
wwl1 (}’ - %)2 1— 1—
——=—A{bWWY + b _w w7} A4
(T g2 P DoAY

where F =,F; is hypergeometric function [35]. In
Eq. (A3) ww* is equal to
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scattering amplitude has a symmetry with respect to
b — —b. Q7 is the conjugate variable to b, and since

Np(r,r;b;Y) = rer/dzkan’ ik 1y +ik Ty

X/szreiQT'bGBFKL(Y; Or; ky, kr),
(A7)

we see that the value of typical Oy < 1/r, & 1/Ry. In
Eq. (A7) GB™L(y —y/; Op; Ky, ky) denotes the BFKL
Pomeron Green function with the momentum transferred
Q7 and the transverse momenta of gluons k7 at y and k. at
y’. The initial condition for the BFKL Green function is the
exchange of two gluons at y = y'.

In Eq. (A7), the value of r; in our problem is about
1/pyy or 1/psn, and we trust perturbative QCD calcula-
tions only if py| ~ pro > 1/Ry. Since r| < r,, we can use
Eq. (A4) and take ww* to be equal to

2.2
* "nr 2,2
ww* = . (A3) rr
b 1 _ 2 b _ 2 * = . A8
(b—5(ry—ry))*(b+5( r)) " (b—%rz) (b—i—%rz)z (A8)
and b, is given b
P58 Y Bearing in mind that
Iy) T(d-p)
b, = z3241/2-7) . (A6) _
4 r(1/2-y)I(1/2+y) 1,(k) :/ Jir eik-rzzl—ZyM%, (A9)
(r) C(y) (k)7
From Eq. (A3) and Eq. (AS5) we see that (i) b is about of the
size of the largest dipole (b ~ r, for r, > ry), and (ii) the by plugging Eq. (A9) into Eq. (A7), we obtain
|
BFKL / (r—3) 1 , 1
G (y; Ori K ky) = r d*myl,_, (kK'r —m'r)], =50r )L (m' +50r 1y (k)
1
+0by, / &mrl,(Kr —mp)l,_, (m - EQT) I, (m + EQT) I;/(kT)}' (A10)
The integrals over m’ can be taken by replacing vector variables with the complex coordinates [23]
k — pp =k, + iky; pr = ky — iky, (A11)

where k, and k, denote the x and y projections of k. Using formula 3.197(1) of Ref. [35], we can take integrals over

d*m' = dp,ydp*,, as follows:

1
Vy(k/T’QT):/dzm/TI]—y(k/T_m/T)I <m —*QT I (m’+ QT>

:/d/)m’d/)rn’ll—7<( — P’ pk m I <

= 241 )

1 Pk‘F%PQ Py +30%
(e i s ) L e )
2

) ) -1 - 40)

(A12)

Pk —2P0 Pk —2Pg
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F(}/?l_yala

B 1
= (9.1311 of Ref. [31])224T*(1 —y) 03y

1

= (9.1322 of Ref. [31])2>4T*(1 ) (U 10,2
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+ *+ *
Pk pQ)F(y,l—y,l,pk f’Q>,
Po Po

(A13)

I'(1-2y)
) {Fz(l —7)F

p p =2 T(=1 42y p
px +pPo Pr+po I*(1y) Pr+Po

5 {F(l ~2) .
2(1-y)

Plugging Eq. (All) into Eq. (A10), one can see that
&N (y,k'r,kr,Qr) can be written in the factorized form

Vy(k/T’ QT)I}/(kT>
+ Vl—y(k/Tv QT)Il—y(kT)-

GBFKL(?’?QT;k/T’kT) =
(A15)

N in the rapidity representation can be calculated as

GPRN(Ys, Qrs K 7. kr)
/e+loo d]/

" Jeico 271'1
Taking the integral over y in Eq. (A16) by the method of
steepest descent [18], we see that for large Y > 1 the
essential y =1 + iv, where v is small. Bearing this in

2
mind, we can see from Eq. (A13) that at large Q > k.,

GB*EL(Y:. Q73K 1. kr) x1/(07) =1/ Q7. At Q7 —007 >
KyGP™RL(Y;, Qr; k', ky) — Const. Therefore, we con-
clude that the typical value Q7 in the BFKL Pomeron is
about k’T, the smallest transverse momenta.

At large Y we can simplify Eq. (A16) using Eq. (A15)
and the small size of v. Plugging GB™8L(Y;, Qr: k' 1. ky)
from Eq. (A15) into Eq. (A16), we have

(7 O>YGBFKL(7/ k T?kTv QT) <A16)

GPN(Y Qs K ker)
e+ico d)/
= [ ey, Uy @1 )

vkl 2C( )
—)kTr Vi(ky. Or)

+oco+ie
X / @ e(w(%,O)—sz)Y-ﬁ-iv In(k2./k'2)
—ootie 2r

2C(}/ = %) , 271' 1 lllz(k/;_/k%,)
— { 22 e0GO)Y—p7
T Kpky Vil @r){ |/ pye” ' '

(A17)

: NI (=142
<, 7,27, *pQ >+Q*pQ > ( 2+ J/)F(l—y,l—y,Z(l—y), f)*Q*>}. (Al14)
Pr+Po x TPo I*(1y) PrtPo

|

The integral in Eq. (A17) is taken in the saddle point
approximation  with  wvgp = iln(k3/K'2)/2DY < 1
and o(} = iv,0) = w(},0) — D12

APPENDIX B: THE BFKL
POMERON-ONIUM VERTEX

The scattering amplitude of a dipole of size x,; with an
onium has the following form:

(Y X015 QT /sz elxm O \I};nlum(x6l)

X N(Y;5x01, %01, Q) W ium (X01)- (B1)

In the momentum representation it can be written as

Ay, ky, kr, Or)
= (F(QT) - F(Zk,T - QT))

o
% / d2x61 e~k rx (ll_lkT'xolN(]/;X61 , X0l QT)/X(Z)l .

(B2)

The amplitude e~ * r¥ o=k~ N (y; x| xq,, Qr)/x3, can be
written in the factorized form of Eq. (A15)

_'I .I —7 o
e~ ®rxor=ikrXo N (y: x{),, xo1. Or) /X3,

= Vi (k7. Qr)N, (kr) + Vi_, (k7. Q)N (kr).  (B3)

where V' (i, Q7) is equal to
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r 1 1
VY (kg Qr) = / dzm/TI—y(k/T -m'7)l, <m’ - 2QT) I, (m’ + 2QT>

1 1 1 1
= / dpwdp I, ((px = pur (0% = P ), ( (/)m' + EPQ> (pi;/ + Ep*Q) > I, ( <pmr - EPQ> (p:‘,,/ - EP*Q)>

(1 +y)r2(1 - 1 1 : i 308
= -y 1UED) 2( 2 T 215 (02 1—2yF<1 +7,y,2,/prQ)F<1 +7,7,2,%>.
C(=p)(y)  ((kr —3Q7)7)""7 (07) Pk = 3P0 Py =500
(B4)
Finally, the BFKL Pomeron-onium vertex takes the form
Vin(0r) = [ @ F(0r) - FOK' = Qr)VE Ky 0r). (B3)
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