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We describe the production of heavy quarkonia in pA collisions within the dipole approach by assuming
the dominance of the perturbative color-singlet mechanism (CSM) in the pT -integrated cross section. Although
accounting for a nonzero heavy Q-Q̄ separation is a higher-twist correction that is usually neglected, we found it
to be the dominant source of nuclear effects, significantly exceeding the effects of leading-twist gluon shadowing
and energy loss. Moreover, this contribution turns out to be the most reliably predicted, relying on the precise
measurements of the dipole cross section at the Hadron-Electron Ring Accelerator (HERA) at DESY. The nuclear
suppression of quarkonia has been anticipated to become stronger with energy because the dipole cross section
steeply rises. However, the measured nuclear effects remain essentially unchanged within the energy range from
that of the BNL Relativistic Heavy Ion Collider (RHIC) to that of the Large Hadron Collider (LHC). A production
mechanism is proposed that enhances the charmonium yield. Nuclear effects for the production of J/ψ , ψ(2S),
ϒ(1S), and ϒ(2S) are calculated and are in agreement with data from RHIC and LHC. The dipole description
offers a unique explanation for the observed significant nuclear suppression of the ψ(2S)-to-J/ψ ratio, which is
related to the nontrivial features of the ψ(2S) wave function.
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I. INTRODUCTION

Inelastic interactions of a heavy-quark pair propagating
through a nucleus is a higher-twist effect, ∼1/m2

c , which
is therefore usually neglected, while leading-twist gluon
shadowing is believed to be the main source of nuclear
suppression at high energies. However, a considerable nuclear
suppression of J/ψ production in pA collisions has been
observed in pioneering measurements [1,2], even though the
energy range of these experiments was too low to explain
the observed nuclear effects by gluon shadowing. These data
provided the first evidence for the importance of higher-twist
effects, which certainly remain essential at higher energies and
should contribute to the strong nuclear suppression observed
in pA collisions at Fermilab [3], the BNL Relativistic Heavy
Ion Collider (RHIC) [4] and the Large Hadron Collider
(LHC) [5,6]. Although higher-twist effects as a possible
explanation of the observed nuclear suppression of J/ψ was
proposed in Ref. [7], no numerical evaluation was done.

In what follows, we consider for concreteness charmonium
production, mainly J/ψ , unless otherwise stated. However,
the developed techniques will be also applied to the calculation
of nuclear effects in the production of radial excitations and
bottomium states.

Charmonium suppression related to the nonzero size,
r ∼ 1/mc, of a perturbatively produced c̄c dipole, is a higher-
twist effect that vanishes in the limit of high quark masses.
Quantitatively, however, it turns out to be the main contributor
to the nuclear effects in charmonium production observed
so far [8,9]. At this point we should emphasize that this
higher-twist effect is the best known part of nuclear effects.
The dipole cross section has been thoroughly measured in
deep-inelastic scattering (DIS) at the Hadron-Electron Ring
Accelerator (HERA) at DESY, as function of the dipole energy
and size. Therefore, the higher-twist part of dipole attenuation

in nuclear matter, which is responsible for charm nuclear
shadowing, is pretty well known and leaves not much room
for other mechanisms when compared with data [8,9]. On
the other hand, leading-twist gluon shadowing, which makes
nuclear media more transparent for dipoles, has been poorly
fixed by data so far, ranging from a very weak [10,11] up
to dramatically strong effect [12], even breaking the unitarity
bound [13].

These effects lead to reduction of the J/ψ production rate,
while the magnitude of shadowing (both, leading and higher
twist), as well as the breakup dipole cross section, steadily
rise with energy. Therefore, it looks natural to anticipate a
stronger suppression of J/ψ produced in pA collisions at
the LHC compared with RHIC, as predicted in Refs. [9,14].
However, the measurements [5,6], unexpectedly revealed an
energy-independent magnitude of J/ψ suppression, which
remains unchanged through the huge energy range between
RHIC and LHC. This contradiction creates a serious challenge,
because as was mentioned above, the dipole phenomenology
is well fixed by HERA data, leaving little freedom in its
predictions. In spite of the large uncertainly in the gluon
shadowing case, it cannot reduce the problem, because its
magnitude also rises with energy.

Here we identify a mechanism that enhances charmonium
production and explains the observed anomalous energy
dependence. This mechanism was proposed and employed in
Ref. [15] for the explanation of the European Muon Collabora-
tion experiment puzzling data [16] on nuclear photoproduction
of J/ψ . The observed nuclear enhancement was related to non-
Glauber double-color-exchange interactions with different
bound nucleons. In fact, multiple-color-exchange interactions
of a dipole propagating through a nuclear medium lead to a
nonvanishing survival probability of the dipole, and even to
an enhancement in specific channels. This is demonstrated in
Sec. II, based on the results presented in Appendix A.
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Nevertheless, the opacity expansion shows that the mean
number of color-exchange interactions is rather small even
in heavy nuclei, although it rises with energy. Still, the main
contribution to J/ψ production is expected to be provided by
the single color-exchange interaction considered in Sec. III.
The cross section on a nucleon tends to cancel in the nucleus-
to-proton ratio, but the nuclear attenuation factor depends on
the features of the parton ensemble propagating through the nu-
cleus. Therefore the description of J/ψ production in pp colli-
sions is essential within the dipole approach, since it allows us
to calculate the distribution function of the produced partons
in impact-parameter space. The details of the calculations are
presented in Appendix B. The next term of opacity expansion,
the double-color-exchange interaction, is described in Sec. IV.
The specific challenge here is the calculation of nuclear
attenuation factors for c̄c pairs in certain color states. We found
the correction R(2N) to the nuclear ratio RpA to be significant.

Other nuclear effects are also included in the calculations.
Gluon shadowing corrections, evaluated in Sec. V, are found to
be negligibly small at the RHIC energy, but rather significant
at the energy of LHC, especially at forward rapidities.
Energy-loss corrections are considered and introduced in
the calculation in Sec. VI. The nonperturbative source of
energy loss, related to the energy-sharing problem at forward
rapidities, occurs on a soft scale and brings major corrections to
the nuclear effects, as described in Sec. VI A. The perturbative
mechanism of energy loss, described in Sec. VI A, is related
to the phenomenon of saturation, which generates a new
scale, the saturation momentum, or nuclear broadening. We
found the related energy loss to be quite a weak effect, being
strongly suppressed by the ratio of the saturation scale to
the quarkonium mass squared. This suppression has been
missed in previous evaluations, which grossly overestimated
this effect of energy loss.

Special interest has always been paid to nuclear effects in
the production of radial excitations, considered in Sec. VII. The
quarkonium wave function participating in the convolution
with the produced c̄c wave packet, has a node, which leads
to a partial compensation between small and large dipole
separations. Nuclear color filtering modifies the convolution
and can lead to illuminating effects, as was found in the
photoproduction of ψ(2S). The dynamics of hadroproduction
is more involved and we arrived at a stronger suppression
of ψ(2S) compared with J/ψ . Nuclear effects in ψ(2S)
production is a sensitive test of the dipole description of the
production mechanism. It provides a unique explanation of the
strong suppression of the ψ(2S) to J/ψ ratio in pA collisions.

The developed dipole description of nuclear effects in
charmonium production can be easily extended to heavier
quarkonia. In Sec. VIII we perform calculations for the
production of ϒ(1S) and ϒ(2S) and obtained good accord
with available data.

II. PROPAGATION OF c̄c DIPOLES IN NUCLEAR MEDIUM

A. Characteristic length scales

Two general amplitudes of c̄c production at different
points separated by longitudinal distance �z have a relative

phase shift �φ = qL�z in the nuclear rest frame, where the
longitudinal momentum transfer is qL = M2

c̄c/2Ec̄c. Corre-
spondingly, the longitudinal length scale lc = 1/qL, usually
called coherence length [17,18], reads

lc = 1

qL

= 2Ec̄c

M2
c̄c

. (1)

If the coherence length exceeds the nuclear dimension, one
cannot localize the coordinate of the c̄c pair production, in
which case the pair propagates through the whole nucleus.
This regime occurs at the energies of RHIC and LHC (except
for large negative rapidities).

The c̄c dipole produced with small transverse separation
rT ∼ 1/mc expands and eventually forms the charmonium
wave function on a much longer length scale, called formation
length [17,18],

lf ∼ 2Ec̄c

M2
ψ(2S) − M2

J/ψ

� lc, (2)

where the masses in the denominator correspond to the first
radial excitation ψ(2S) and the J/ψ . This can be interpreted in
terms of the uncertainty principle as the time interval required
to disentangle the two hadronic masses, while the originally
created c̄c pair has no certain invariant mass and no wave
function.

B. Fluctuating dipoles

It is clear that, at sufficiently high energies, the dipole
separation does not fluctuate during propagation through
the nucleus due to Lorentz time dilation. In this regime the
calculations are significantly simplified, so we intend to figure
out the kinematic constraints for employing such a “frozen”
regime.

The evolution of a c̄c dipole propagating through a medium
can be described by summing up all possible trajectories of the
quarks between the initial and final states. The amplitude of
dipole propagation between longitudinal coordinates z1 and
z2, with initial and final transverse separations �r1 and �r2,
respectively, is given by the matrix element of the Green’s
function

A(z1,z2) =
∫

d2r1d
2r2�

†
f (�r2)G(�r2,z2; �r1,z1)�in(�r1), (3)

where �in(�r1) and �f (�r2) are the initial and final c̄c distribution
amplitudes, respectively.

The Green’s function satisfies the two-dimensional light-
cone equation [18–22],

i
∂

∂z2
G(z2,�r2; z1,�r1)=

[
m2

c − �r

2Ec̄cαcᾱc

+ V (r,z2)

]
G(z2,�r2; z1,�r1),

(4)

with the boundary condition G(z2,�r2; z1,�r1)�z=0 = δ(�r2 − �r1).
Here αc and ᾱc = 1 − αc are the fractional light-cone momenta
of c and c̄, respectively. In what follows we fix α = 1/2
because the charmonium wave function strongly peaks at this
value [21–23]. The real part of the light-cone potential ReV (r)
describes the binding effects, while ImV (r,z) is related to the
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absorption effects, i.e., multiple inelastic interactions of the
dipole with the medium.

The goal of this section is to figure out the kinematic range
of validity of the frozen approximation, which corresponds
to the high-energy limit, where the formation length (2)
is much longer than the path length of the dipole in the
medium, lf � �z. In this frozen dipole regime the Green’s
function approaches the limit G(�r2,z2; �r1,z1) ⇒ δ(�r1 − �r2)
and, correspondingly, the amplitude Eq. (3) takes the form

A(z1,z2) ⇒ A0(z1,z2) =
∫

d2r�
†
f (�r )�in(�r ), (5)

To quantify the deviation from the frozen approximation
we evaluate the ratio

ε(x2,�z) = |A(z1,z2)|2
|A0(z1,z2)|2 , (6)

where x1 and x2 are the fractional light-cone momenta of the
colliding gluons, gg → c̄c,

x1 = MT√
s
e+y, x2 = MT√

s
e−y (7)

Here MT = (M2
c̄c + p2

T )1/2, pT , and y are the transverse
invariant mass, transverse momentum, and rapidity (in the NN
collision c.m.) of the produced c̄c pair, respectively. Notice that
the dipole energy in the nuclear rest frame is directly related
to the value of x2,

E = M2
T

2mNx2
. (8)

Anticipating that the validity of the frozen approximation
means that the result is not sensitive to the details of the binding
potential, we evaluate ε(x2,�z) in a harmonic-oscillator
potential model [18,20], ReV (r) = (2ω2m2

c/E)r2, where
ω = (Mψ ′ − MJ/ψ )/2 ≈ 0.3 GeV. The imaginary part is
related to the absorption rate, ImV (r,z) = C(x2)r2nA(z)/2,
where the nuclear density is assumed to be constant, nA =
0.15 fm−3, and the coefficient C(x2), which controls the dipole
cross section at small dipole separations, was calculated in
Ref. [24] with the parametrization [25] of the dipole cross
section. In this case Eq. (4) has the analytic solution [18,20]

G(�r2,z2; �r1,z1) = N

2π sinh(�z)
exp

{
−N

2

[(�r 2
1 + �r 2

2

)

× coth(�z) − 2�r1 · �r2

sinh(�z)

]}
. (9)

Here

N2 = ω2m2
c − i

4
EnAC(x2),  = 4iN

E
. (10)

With this solution we evaluated ε(x2,�z), Eq. (6), fixing
�z = 5 fm and using the oscillatory J/ψ wave function as
well as the initial distribution function with the mean
separation 〈r2〉 ∼ 1/m2

c . The results are depicted as function
of x2 by a solid curve in Fig. 1. We see that the frozen
approximation is valid with a high precision up to rather large
values of x2 ∼ 0.1 and works reasonably well even at larger
x2, matching the Glauber regime. These results confirm the

FIG. 1. Ratio (6) of the dipole propagation probability to the one
calculated in the frozen approximation. Solid and dashed curves are
calculated either with the oscillatory binding potential, or without any
potential, respectively.

observation made earlier [18], that the nuclear effects in J/ψ
photoproduction remain constant down to quite low energies
and are close to the results of the Glauber approximation.

It is instructive to compare this with free c̄c pair propagation
with no binding potential and no absorption. In this case the
free Green’s function is simplified,

G(�r2,z2; �r1,z1)|free

= αcᾱcEc̄c

2iπ�z
exp

[
iαcᾱcEc̄c

2�z
(�r1 − �r2)2

]
. (11)

The corresponding ratio ε(x2,�z) is depicted by a dotted curve
in Fig. 1. We see that even in this extreme case of free expansion
the frozen approximation is still accurate up to x2 ∼ 0.1, far
more than is needed for the description of available data for
J/ψ production at RHIC and LHC. Of course at larger x2 the
result significantly deviates from the frozen limit, because the
quarks freely fly away from each other.

C. Breakup and restoration of colorless dipoles

According to conventional wisdom and supported by
eikonal-type models, the survival probability of a colorless c̄c
dipole propagating through a nuclear medium is exponentially
falling with respect to the propagation path length. This is
expected to be a result of color-exchange interactions with
the surrounding bound nucleons, which break up the dipole.
However, as is demonstrated below, this is not correct; a high-
energy dipole has a finite survival probability even in the limit
of full absorption, the so-called “black disk” regime [26,27].

If the dipole energy is sufficiently high, the regime of frozen
dipoles, described above, remains valid in the medium. Indeed,
multiple-color-exchange interactions of the dipole with the
bound nucleons do not affect the dipole transverse separation,
and the interactions only change the color indices of the quark
pair, leading to breakup of the dipole, which becomes colored,

c̄icj + N → c̄kcl + X, (12)

as is illustrated in Fig. 2.
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FIG. 2. Multiple-color-exchange interaction of a high-energy c̄c

pair propagating through a nucleus.

Such interactions also destroy the target nucleons, so they
occur incoherently and should be described in terms of the
density matrix k

l U
i
j (�r; �r ′; z). The evolution of the density

matrix of a high-energy dipole propagating through the nuclear
matter is described in Appendix A. Here we present the results
for the probabilities of production of the final dipole in either
color singlet S(r) or color octet O(r) states (�r = �r ′).

After propagation through nuclear matter of thickness,
�TA = ∫ z

z1
dz′nA(z′), where nA(z′) is the nuclear density along

the propagation trajectory, the probability of finding the dipole
in a color singlet S or octet O states, reads (see derivation in
Appendix A)

S(r,z) = [
1
9 + 8

9e− 9
8 σq̄q (r)�TA

]
Sin(r),

O(r,z) = [
8
9 − 8

9e− 9
8 σq̄q (r)�TA

]
Sin(r). (13)

Here Sin(r) is the size-distribution function of the initial color-
singlet dipole; σq̄q(r) is the universal dipole-nucleon cross
section [28], which depends on transverse dipole separation
and implicitly on the dipole energy or Bjorken x2 (unless
specified otherwise). This cross section is difficult to predict
theoretically, but it is well known from phenomenology, fit
to DIS and photoproduction data. A concrete parametrization
will be specified later.

Even if the initial state is a color-octet dipole with the size
distribution function Oin(r), evolution in the medium may end
up with production of either a color singlet, or octet,

S(r,z) = [
1
9 − 1

9e− 9
8 σq̄q (r)�TA

]
Oin(r),

O(r,z) = [
8
9 + 1

9e− 9
8 σq̄q (r)�TA

]
Oin(r). (14)

We see from Eqs. (13) and (14) that, for a large number
of inelastic collisions of the c̄c dipole, σc̄c(r)�TA � 1,
the probabilities of production of color-singlet and -octet
states approach the universal values, 1

9 and 8
9 , respectively,

independently of the color structure of the incoming c̄c pair.
This could be easily anticipated, since both quarks become
completely unpolarized in color after multiple rotations in the
color space. All nine possible color states (N2

c ) of the c̄c are
produced with equal probabilities, and only one of them is a
singlet, while the eight others (N2

c − 1) are octets.

D. Opacity expansion

The mean number of inelastic (color-exchange) collisions
of a c̄c dipole of transverse quark separation r , propagating
through the nucleus, is

nc̄c
coll(r,B) = σc̄c(r,Ec̄c)TA(B), (15)

where the nuclear thickness function at impact parameter B
reads

TA(B) =
∫ ∞

−∞
dznA(B,z), (16)

where nA(B,z) is the nuclear density.
For the energy dependence of σc̄c(r,Ec̄c) we rely on

parametrizations in the saturated form [25,29,30] for σc̄c(r,x),
fit to HERA data on the proton structure function F2(x,Q2).
We are interested in rather low values of Q2 ∼ M2

c̄c, for
which even the simple parametrization [25] works well [31].
The value of target fractional momentum of a target gluon
x2 = e−y[(M2

c̄c + p2
T )/s]1/2, controls the magnitude of the

dipole cross section. Here y is the rapidity of the produced c̄c
pair; pT is its transverse momentum, which is of the order of
the mean value, because we are interested in the pT -integrated
cross sections.

The dipole cross section steeply rises with energy at small
separations, σq̄q(r,x) ∼ (1/x)0.3. At energy

√
s = 200 GeV

and at the thus-far measured rapidity range 0 < y ∼< 2, the
mean number of collisions preceding the production of the final
colorless c̄c, is nc̄c

coll ∼ 0.05–0.1. Correspondingly, at energy√
s = 5 TeV and 0 < y ∼< 3, nc̄c

coll ∼ 0.1–0.2.
In view of such a small probability of interaction, we keep

only the two lowest-order terms in the opacity expansion:
(i) single-step direct production [9,23] of charmonium by
the projectile gluon interacting with a bound nucleon, gN →
{c̄c}ψX, with coordinates (z, �B), with no preceding- or final-
state interactions; (ii) a double-step process [15], with the
production of a color-octet dipole, gN → {c̄c}8X, in the first
collision, and the final creation of J/ψ in the second collision,
{c̄c}8 + N → J/ψ + X.

Correspondingly, the ultimate observable to be calculated,
the nucleus-to-proton ratio, gets contributions from two terms,

R
J/ψ
pA (s,y) ≡ σ (pA → J/ψX)

Aσ (pp → J/ψX)

= R
(1N)
pA (s,y) + R

(2N)
pA (s,y). (17)

We assume here that all cross sections are pT integrated.
The first term R

(1N)
pA (single-step production) was evaluated

for the production of χ2 in Ref. [23] and for J/ψ in
Refs. [8,9]. While this term alone reproduces RHIC data
reasonably well, the nuclear suppression predicted in Ref. [9]
for the LHC turned out to be too strong compared with the
latest measurements [5,6]. Data show that nuclear suppression
of J/ψ remains nearly unchanged within the wide energy
range from RHIC to LHC. This is impossible for R

(1N)
pA ,

because the dipole cross section, well constrained by HERA
data, rises steeply with energy, leading to a stronger nuclear
attenuation of dipoles and smaller values of R

(1N)
pA (s,y) at

higher energies. Therefore, the observed similarity of nuclear
effects at RHIC and LHC indicates the onset of a new
mechanism, which enhances J/ψ production at LHC energies.
A natural candidate for such a mechanism is the double-step
term in Eq. (17), which indeed gives a positive contribution,
which rises with energy faster than the single-step term.

At this point a word of caution is in order. The above
estimates for the opacity expansion assumed the same
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interaction cross section for each of multiple collisions. If,
however, the double-step production is dominated by the
color-singlet mechanism, the term R2 turns out to be a ratio
of different mechanisms. Moreover, gluon radiation in the
color-singlet model (CSM) brings an additional factor r (dipole
size) into the amplitude, and then the r dependencies of R1

and R2 become similar. Therefore, one can make reliable
conclusions about the relative values of the two terms in
Eq. (17) only after performing detailed calculations, which
are presented below.

III. SINGLE-STEP J/ψ PRODUCTION

At first glance, if we assume that charmonium is produced
on a bound nucleon in the same way as on a free one (see,
however, Sec. VI), the production cross section on a nucleon
should cancel in the first term R(1N) of the nuclear ratio (17),
as happens in Glauber-type models. However, attenuation of
the projectile and produced partonic ensembles propagating
through the nucleus depends on the mutual transverse sep-
arations between the partons, which are controlled by the
production mechanism. Therefore, the nucleon cross section
of J/ψ production does not cancel out and affects the nuclear
ratio R(1N), which becomes model dependent.

First of all, one should specify the model for J/ψ
production, pp → J/ψX. Currently the most successful
parameter-free description of data has been achieved within
the color-singlet model (CSM) proposed in Refs. [32,33],
with further developments and applications in Refs. [34–36].
Production of J/ψ is treated in CSM perturbatively, as a
result of glue-glue fusion resulting in production of a colorless
S-wave c̄c pair and a gluon, as is illustrated in Fig. 3 (left).
Gluon radiation allows the c̄c dipole to have S-wave symmetric
wave function (see below).

Another popular approach, called color octet model, is
based on the nonrelativistic QCD effective field theory
[37–41]. The main assumption of the model is that color
neutralization occurs via evaporation of soft gluons on a
long timescale, of the order of the formation time (2). Such
an unjustified assumption has obvious problems. The initial
color-octet c̄c pair is produced perturbatively at a hard scale
Q2 ∼ 4m2

c , with no soft gluonic field with frequencies kT <
mc. The lacking field is regenerated via perturbative radiation
of gluons, making J/ψ production possible in color octet to
singlet transition {c̄c}8− → g{c̄c}1+ , which is a part of the
CSM (see details and notations below). In this way the c̄c
pair can survive as a color octet and evolve its virtuality down
to low scale of the order of the inverse mean J/ψ radius,

1
−

8

+−
c

a

b

c

g

NN NN

g

FIG. 3. (left) Symmetric 1+ state production in glue-glue fusion,
gg → g{c̄c}1+ . (right) Diffractive production of color-octet state
g + N → g{c̄c}8− + N with subsequent color-exchange transition
8− → 1+ on another nucleon.

and then radiate gluons nonperturbatively (color evaporation).
However, the probability of scale evolution without gluon
radiation, neutralizing the dipole color, is suppressed by a
Sudakov-like factor, which is ignored in the color-octet model.

Moreover, the idea of preferable color neutralization at a
soft scale, enhanced by a large value of the QCD coupling,
does not seem to be correct, either. Indeed, according to
the Low theorem [42] the matrix element of a process with
soft radiation is proportional to the process amplitude without
radiation, which is impossible for J/ψ production.1 Besides,
this model has low predictive power, because it fits the
unknown parameters to the data to be explained. In view
of all that, we consider the color-octet model as a dominant
mechanism of J/ψ production.

Another alternative to the CSM is the possibility of
producing J/ψ without gluon radiation, but via 1 + 2 gluon
fusion, where the two gluons originate either from the beam or
target. However, evaluation of the cross section [43] results in
an order of magnitude smaller production rate in comparison
to the CSM. We disregard this contribution in what follows.
Nevertheless, a precaution is required for J/ψ production
at very forward rapidities, where CSM is suppressed by the
shrinking phase space for gluon radiation.

A. Initial-state shadowing vs final-state attenuation

As we already discussed in Sec. II A, at sufficiently high
energies any short time interval is subject to Lorentz time
dilation and becomes long. Even a hard collision, which is
characterized by a very short timescale τ ∼ 1/Q in its c.m.
frame may last a long time [see Eq. (1)] in the target rest
frame, longer than the nucleus dimension. In this limit J/ψ
production can be treated as a result of interaction of the
|c̄cg〉 Fock component of the incoming gluon with the whole
nucleus.

Formally one can derive this adding up the two amplitudes
depicted in Fig. 3. The first one corresponds to the direct
production of the final S-wave colorless c̄c pair symmetric
in spatial and spin variables, denoted by {1+}. Another
contribution, depicted by the right picture in Fig. 3, contains
diffractive on-mass-shell production of the projectile gluon
fluctuation g → c̄cg, preceding the color-exchange interac-
tion. To end up with the production of a J/ψ , the c̄c pair in this
fluctuation should be a P -wave color octet state, asymmetric
in spatial-spin variables, which we denote by {8−} [44]. This
color octet pair undergoes color-exchange interactions with
the same bound nucleon, as in the first term of the amplitude,
and switches to the final colorless {1+} state.

While the color-exchange interaction occurs on different
nucleons incoherently, the diffractive production on different
nucleons is a coherent process. If the coherence length (inverse
longitudinal momentum transfer) is much longer than the
nucleus radius, the result is equivalent to interaction of a |c̄cg〉
fluctuation with the whole nucleus [15,45].

Nuclear effect calculations in the CSM have been per-
formed so far in the momentum representation [32–36], which

1We thank Yuri Dokshitzer for this remark.
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makes them hardly possible, and in fact this is the reason
why the dipole representation for high-energy interactions was
first proposed in Ref. [28], and extensively used, in particular
for charmonium production off nuclei [8,9,22,23,44,46]. On
the other hand, multiple interactions in a nucleus factorize
in impact parameter representation, which is then the most
appropriate for calculation of the nuclear effects.

Color-singlet model via dipoles: The size distribution

First of all, one should formulate the CSM in terms of dipole
interactions. As explained in detail in Ref. [44], the cross
section of the process g + p → c̄cg + X is given by the cross
section of of the four-body dipole |ggc̄c〉, σ4(�r, �ρ,α,αg), where
�r is the c-c̄ transverse separation; �ρ is the transverse distance
between the center of gravity of the c̄c and the radiated gluon.
The second gluon in the four-body dipole is the time-inverted
initial gluon, whose transverse position coincides with the
center of gravity of the whole system. The fraction of the
light-cone momentum of the initial gluon, carried by the final
gluon is αg; and the fractional momenta of c and c̄ inside the
produced colorless dipole, projected to the J/ψ wave function,
are α and ᾱ = 1 − α, respectively.

Notice that that the mean values of 〈r2〉 and 〈ρ2〉 are
controlled by different mass scales. While the former is related
to the heavy-quark mass, r ∼ 1/mc, the latter is controlled by
a semihard scale, related to the nonperturbative dynamics.
It has been determined by phenomenological analysis of
data [20,47], with fixed m2

g ≈ 0.5 GeV2, which can be treated
as an effective gluon mass squared. The calculations are
significantly simplified, if the small 〈r2〉 is neglected compared
with 〈ρ2〉. Then the color-octet c̄c pair can be treated as point
like, i.e., is equivalent to a gluon, so the σ4 takes the form of a
three-gluon dipole cross section [44],

σ4(ρ,αg) = 1
2 [σgg(ρ) + σgg(αgρ) + σgg(ᾱgρ)], (18)

where

σgg(ρ) = 9
4σq̄q(ρ). (19)

We remind that all dipole cross sections depend also implicitly
on x2, related according to Eq. (7) to the rapidity y of the
produced c̄c, which we associate with the rapidity of the
detected J/ψ , unless specified otherwise.

For further calculations we need to make a choice of
parametrization of the dipole cross section σq̄q(r,x2). Hereafter
we rely on the parametrization [29] fit to HERA data,2

σq̄q(r,x2) = σ0

{
1 − exp

[
π2r2αs(μ2)x2g(x2)

3σ0

]}
, (20)

where the parameter σ0 and the scale μ2 are defined in
Ref. [29].

The presence of the gluon density in Eq. (20) shows that this
parametrization corresponds to the Pomeron contribution to
the dipole cross section. This is the reason why it describes well

2More recent analyses, which also include impact parameter
dependence of the elastic dipole amplitude are now available [30].
For our purposes a b-integrated cross section is sufficient.

the DIS data only at sufficiently small x2 < 0.01 [29]. At larger
x2 the Reggeon contribution, which corresponds to valence
quarks in F2(x,Q2), increases, and the Pomeron alone fails to
describe data. This problem, however, is relevant only for light
quarks, which dominate in the F2(x2,Q

2) measured at HERA.
For c̄c dipoles the Reggeon term, corresponding to valence q̄q
exchanges, is suppressed by the Okubo–Zweig–Iizuka (OZI)
rule [48–50], which suppresses valence charm component
in the proton. Smallness of such a component (intrinsic
charm [51,52]) is confirmed by data [53], so it can be neglected.

For c̄c dipoles the Reggeon term is suppressed by the OZI
rule and can be neglected [48–50]. Thus, the parametrization
Eq. (20) for c̄c dipoles can be safely extended up to x2 ∼ 0.1,
where the coherence length Eq. (1) shrinks down to the nucleon
size.

The cross section of J/ψ production is derived in Ap-
pendix B and is given by Eq. (B15). Since the amplitude
contains the projection to the J/ψ wave function, the cross
section contains integrations over �r and �r ′. On the other
hand, the radiated gluon is not registered, and integration over
its transverse momentum produces a δ function δ( �ρ − �ρ ′).
Therefore the size distribution function W ( �ρ,�r,�r ′) depends on
only three variables. We normalize this function to unity and
relate it to the pp differential cross section of charmonium
production, presented in Eqs. (B14)–(B15),

W ( �ρ,�r,�r ′) = dσ
J/ψ
pp

dyd2ρd2rd2r ′

[
dσ

J/ψ
pp

dy

]−1

. (21)

This distribution also depends implicitly on x2.

B. Nuclear effects

Now we are in a position to predict the nuclear effects,

R
(1N)
pA (s,y) =

∫
d2B

∫ ∞

−∞
dznA(B,z)

∫
d2ρd2rd2r ′

×W ( �ρ,�r,�r ′)S(1N)
A (B,z1, �ρ,�r,�r ′). (22)

Here �B is the impact parameter of the pA collision; z is
the longitudinal coordinate of the incoherent color-exchange
interaction, which leads to the production of a colorless S-wave
c̄c dipole, projected to the J/ψ wave function. The nuclear
suppression factor S

(1N)
A includes shadowing due to reduction

of the c̄cg flux at z′ < z and attenuation of the produced
colorless c̄c dipole at z′ > z,

S
(1N)
A (B,z1, �ρ,�r,�r ′) = exp[−σ4(ρ,αg)T−(B,z)]

× exp[−�1(�r,�r ′)T+(B,z)], (23)

where σ4(ρ,αg) is given by Eq. (18), and �1(�r,�r ′) = [σq̄q(r) +
σq̄q(r ′)]/2, by Eq. (A11). The nuclear thickness functions,
T−(B,z) and T+(B,z), which correspond to the propagation
of the projectile gc̄c fluctuation up to the point ( �B,z) and the
propagation of the produced c̄c dipole afterwards, respectively,

T−(B,z) =
∫ z

−∞
dz′nA(B,z′),

T+(B,z) =
∫ ∞

z

dz′nA(B,z′). (24)

065203-6



SUPPRESSION VERSUS ENHANCEMENT OF HEAVY . . . PHYSICAL REVIEW C 95, 065203 (2017)

R
(2N)

R
(1N)

R
(1N)

+R
(2N) RHIC

0.2

0.4

0.6

0.8

1.0

R
pA

0 1 2
y

FIG. 4. From bottom to top, the terms R2N , R1N and their
sum, Eq. (17), for p-Au collisions at

√
s = 200 GeV. Dotted and

dashed curves present calculations without and with gluon shadowing
corrections, respectively.

Apparently, T−(B,z) + T+(B,z) = TA(B), the full thickness
function given by Eq. (16).

Now we can calculate the single-step term Eq. (22) and the
results at

√
s = 200 and 5000 GeV are plotted in Figs. 4 and 5

by blue curves labeled R1N .
These results are close to the first simplified calculations

done in Refs. [8,9], which agreed reasonably well with data [4]
at

√
s = 200 GeV, but grossly under-predicted the ratio RpA at

the energy of the LHC [5,6]. This fact was already highlighted
in Ref. [14].

Notice that such a contradiction with the observed energy
dependence of the nuclear ratio is not a simple failure of a
concrete model, but discloses a deeper puzzle. The dipole cross
section is well constrained by precise DIS data from HERA.

R
(2N)

R
(1N)

R
(1N)

+R
(2N)

LHC

0.2

0.4

0.6

0.8

1.0

R
pA

-4 -3 -2 -1 0 1 2 3 4
y

FIG. 5. The same as in Fig. 4, but for p-Pb collisions at√
s = 5000 GeV.

It is known to steeply rise with 1/x, therefore the magnitude
of nuclear attenuation of dipoles must rise with energy. This
expectation is beyond the details of a particular model, and
cannot be easily changed. The observed similarity of nuclear
suppression at both RHIC and LHC energies should be treated
as an indication of a new mechanism of J/ψ production in
nuclei, for which a natural candidate is the second term in
Eq. (17).

IV. DOUBLE-STEP PRODUCTION

The second term in Eq. (17) is given by

R
(2N)
pA (s,y) = σ (2N)(pA → J/ψX)

Aσ (pp → J/ψX)
, (25)

where the double-step contribution to the numerator is illus-
trated in Fig. 2. Summing over final states one arrives at the
cross section, expressed in terms of the density matrix, as is
described in Appendix A.

The first color-exchange interaction, g + N → c̄c + X, can
result in the production of a c̄c pair in three different states
(at leading order): (i) antisymmetric relative to permutations
of space and spin variables, color singlet {1−} or color octet
{8−}states; (ii) symmetric in spatial-spin variables, color octet
state {8+}. The notations used here are from Ref. [44].

Assuming that the finally produced state after the second
interaction is a colorless S-wave c̄c dipole {1+}, the interme-
diate c̄c pair, between the first and second collisions, must be
a P -wave {8−} state. The first collision cross section has the
form [23,44]

σ (gp → (c̄c){8−}X) =
∑
μ,μ̄

∫ 1

0
dαdα′

∫
d2rd2r ′�μμ̄

g (�r,α)†

×�μμ̄
g (�r ′,α′)�g→{8−}(�r,�r ′,α,α′),

(26)

where �
μμ̄
g (�r,α) is the light-cone distribution function of c̄c

incoming gluon, defined in Eq. (B6);

�g→{8−} ≈ 5

8

[
σq̄q

( �r + �r ′

2

)
− σq̄q

( �r − �r ′

2

)]
. (27)

We fixed here α = α′ = 1
2 , because these values are

strongly enhanced by the projection into the charmonium wave
function [21,23].

The second interaction, {c̄c}{8−}N → J/ψX, is the time
reversal of the usual inelastic (color exchange) interaction,
J/ψN → X, which is related to the dipole cross section,

�{8−}→{1+} ≈ 1

8

[
σq̄q

( �r + �r ′

2

)
− σq̄q

( �r − �r ′

2

)]
. (28)
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Thus, we are in a position to calculate the numerator of the double-scattering term Eq. (25) as

dσ (2N)(pA → J/ψX)

dy
= gN (x1)

∫
d2B

∫ ∞

−∞
dz1nA(B,z1)

∫ ∞

z1

dz2nA(B,z2)
∫ 1

0
dαdα′

∫
d2rd2r ′

×�
†
J/ψ (�r,α)

〈
1M

∣∣∣∣1

2
μ̄

1

2
μ

〉
�

μ̄μ
c̄c (�r,α)

[
�

†
J/ψ (�r ′,α′)

〈
1m

∣∣∣∣1

2
μ̄

1

2
μ

〉
�

μ̄μ
c̄c (�r ′,α′)

]∗

×�g→{8−}(�r,�r ′,α,α′)�{8−}→{1+}(�r,�r ′,α,α′)S(2N)
A (B,z1,z2,�r,�r ′,α,α′), (29)

where the gluon PDF in the beam proton, gN (x1), is taken
at the scale Q2 = 4m2

c . The wave function of quarkonium is
normalized according to∫

dαQd2rQ|�J/ψ (αQ,�rQ)|2 = 1. (30)

For evaluations, we rely on the light-cone (LC) charmonium
wave function obtained with the Cornell potential [54,55] and
boosted to another frame following the procedure developed
in Ref. [13].

The c̄c light-cone distribution function is convoluted
in Eq. (29) including the Clebsch–Gordan coefficient
〈1M| 1

2 μ̄ 1
2μ〉, and M is the spin z projection. The nuclear

suppression factor S
(2N)
A is presented below.

A. The nuclear suppression factor

This factor gets contributions from different parts of the
dipole path through the nucleus (see Fig. 2): (i) prior to the
first collision at longitudinal coordinate z1 and production
of the color-octet P -wave c̄c pair {8−}; (ii) attenuation of
the produced {c̄c}8− pair on the path from z1 up to the
next color-exchange interaction at z2; (iii) attenuation of the
produced colorless dipole {c̄c}1+on its way out of the nucleus.
Correspondingly, the nuclear suppression can be presented as
a product of three factors,

S
(2N)
A = S

z<z1
1 S

z1<z<z2
2 S

z>z2
3 . (31)

The first factor S1(z < z1) has the meaning of shadowing;
namely, the competing probabilities of the process g → c̄c to
occur on different bound nucleons, which reduce the gluon
flux [44,56],

S
z<z1
1 = exp[−�3(�r,�r ′,α,α′)T−(B,z1)], (32)

where �3 = [σ3(r,α) + σ3(r,′α′)]/2, and

σ3(r,α) = 9
8 [σq̄q(αr) + σq̄q(ᾱr)] − 1

8σq̄q(r). (33)

The cross section σ3(r,α) controlling the suppression, is the
total cross section of a three-body dipole (gc̄c), responsible
for the inclusive production process gN → c̄cX [44,56].

The second factor in Eq. (31) can be treated as the survival
probability of the produced (c̄c){8−} pair propagating through
the medium. Its attenuation is controlled by only a part of
the cross section �8(�r,�r ′) introduced in Eq. (A11). While the
diagonal transitions {c̄c}{8−} → {c̄c}{8−} do not affect the final
result, the other channels, such as transitions of {c̄c}{8−} to a
singlet {c̄c}1+ , or to a color octet S-wave {c̄c}{8+}, eliminate
further possibilities of production of J/ψ at z = z2. Summing

up the cross sections of the last two channels, we arrive at the
second suppression factor in Eq. (31),

S
z1<z<z2
2 = exp[−�{8−}(�r,�r ′,α,α′)T12(B,z1,z2)], (34)

where T12(B,z1,z2) = T−(B,z2) − T−(B,z1), and

�{8−} = 7

32
[σq̄q(α�r + ᾱ′�r ′) + σq̄q(ᾱ�r + α′�r ′)

− σq̄q(α�r − α′�r ′) − σq̄q(ᾱ�r − ᾱ′�r ′)]

≈ 7

16

[
σq̄q

( �r + �r ′

2

)
− σq̄q

( �r − �r ′

2

)]
. (35)

In the last line we again employ the approximation α = α′ =
1
2 , for the sake of simplicity.

The last factor in Eq. (23) has a rather obvious form,

S
z>z2
3 = exp[−�1(�r,�r ′,α,α′)T+(B,z2)], (36)

where �1(�r,�r ′) is given by Eq. (A11).
Notice that the z-dependent part of Eq. (22) can be

integrated analytically,∫ ∞

−∞
dz1nA(B,z1)

∫ ∞

z1

dz2nA(B,z2)S(2N)(B,z1,z2,�r,�r ′,α,α′)

= 1 − e−2TA(B)

12
− 1 − e−3TA(B)

13
, (37)

where we introduced the shorthand notations 1 =
�3 − �{8−}, 2 = �{8−} − �1, and 3 = �3 − �1.

B. The pp reference

In our calculation of R
(1N)
pA for the single-step mechanism,

we assumed that the same CSM model dominates both the
numerator and denominator, and therefore they have nearly
identical functional forms, except for the nuclear suppression
factor and some corrections discussed below. So the reference
pp cross section nearly cancels.

The double-step term R
(2N)
pA evaluation is more peculiar,

because the numerator and denominator originate from dif-
ferent mechanisms and have distinct functional forms. While
the former, given by Eq. (22), is calculated directly based on
the well-developed dipole phenomenology, the latter depends
on the choice of a model for inclusive J/ψ production (see
Sec. III) and is assumed here to be dominated by CSM. Thus,
the denominator of R

(2N)
pA Eq. (25) has a rather wide theoretical

uncertainty band, which is related to the accuracy of the
CSM and possibility of other missed contributions (such as
three-gluon fusion [43], certainly important at very forward or
backward rapidities).
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The least model dependent way to treat the denominator of
Eq. (25) would be to take it directly from a fit to experimental
data for pp → J/ψX, available within certain kinematic
domains. We rely on our evaluations of the pp → J/ψX
cross section, performed within the dipole version of the
CSM in Appendix B. The results, compared with data in
Figs. 21 and 22, well reproduce the shape of the y dependence
of the cross section but, however, slightly underestimate the
normalization. At

√
s = 200 GeV we employed the data from

Refs. [4,57]. Lacking experimental results at
√

s = 5 TeV, we
interpolated between data at

√
s = 2.76 TeV and 7 TeV [58].

The details are presented in Appendix B and the results are
depicted in Fig. 22. Since, as we said, data is the most reliable
source of information about the pp cross section, we adjusted
the normalization of the theoretical curves to fit the data,
keeping the shape of the y dependence unchanged.

Now we are in a position to calculate R2N , the ratio of the
cross Sec. Eq. (29) to the chosen pp reference, and the results
at

√
s = 200 and 5000 GeV are plotted in Figs. 4 and 5 by

dotted curves labeled as R2N .

V. GLUON SHADOWING

Leading twist gluon shadowing originates in the nuclear
rest frame from coherent multiple interactions of the radiated
gluons. It can also be treated as the contribution of higher
Fock components in the projectile hadron, containing extra
gluons, which have a coherence (radiation) time sufficiently
long to experience multiple interactions in the nucleus [20].
These gluons are complementary to the gluon radiated within
the CSM mechanism (Fig. 3). Unlike quark shadowing, which
is known to onset at x2 � 0.1 [59], gluon shadowing needs
an order of magnitude smaller x2 to show up [60]. This is
controlled by the coherence length of gluon radiation,

lgc̄c
c = Pg

x2mN

, (38)

which must be longer than the mean-free path in nuclear
matter. The factor Pg ≈ 0.1, evaluated in Ref. [60], makes the
coherence time of gluon radiation significantly shorter than
the Ioffe time for quarks. This happens due to the enhanced
transverse momenta of gluons in hadrons [20,47], which make
the fluctuations containing gluons much heavier. For the same
reason, the mean quark-gluon separation is short, and the
magnitude of the leading-twist gluon shadowing turns out to
be rather small, even compared with the higher-twist quark
shadowing. The weakness of gluon shadowing, predicted in
Ref. [20], was confirmed by the next to leading order analysis
of DIS data [10,11].

The gluon shadowing suppression factor Rg(x,Q2), cal-
culated in Ref. [20], was applied to Drell–Yan process in
Ref. [61], and to heavy flavor production in Ref. [44], where
one can find the details of the calculations. This factor
suppresses J/ψ production on nuclei as well. In our case we
include gluon shadowing by reducing the dipole cross section
with the shadowing factor Rg , which also depends on the
nuclear impact parameter b. Such a way of incorporation of
gluon shadowing can be justified only at first order, which
corresponds to radiation of a single gluon. In fact, radiation

of two gluons leads to a quadratically short coherence time
compared with Eq. (38) [62], too short to cause shadowing at
currently available energies.

The terms R1N and R2N in Eq. (17), with added gluon
shadowing corrections at

√
s = 200 GeV and 5000 GeV,

are depicted in Figs. 4 and 5, respectively. The corrections
are found to be rather small at the energy of RHIC (due to
shortness of the coherence length), but significant at LHC.
Nevertheless, even at the LHC energy, gluon shadowing
vanishes in the backward hemisphere, towards the minimal
rapidity y ∼ −4 in the kinematical range measured so far,
because the coherence length Eq. (38) becomes shorter than
the mean spacing between bound nucleons.

VI. ENERGY LOSS

A. Nonperturbative energy loss

Apparently, multiple soft interactions in the nuclear
medium should lead to dissipation of energy by the projectile
partons, reducing the production rate of J/ψ at large Feynman
xF , where the restricted phase space of produced J/ψ becomes
an issue. Energy loss was first proposed in Ref. [63] as a
mechanism of suppression of the pA-to-pp ratio of J/ψ
production at large xF , observed in Refs. [1,2]. The rate of
energy loss, treated within the string model, was independent
of the incoming proton energy [63]. Perturbative calculations,
performed in the approximation of soft-gluon radiation, con-
firmed the string model result of energy-independent parton
energy loss [64,65]. This, however, could not explain the
observed xF scaling, i.e., similarity of the xF dependencies of
nuclear effects in J/ψ production at different energies [1–3].

Nonetheless, later, in Refs. [66,67], it was found that
the rate of energy loss, either in nonperturbative [66], or
perturbative [67] regimes, rises proportional to the incoming
energy. This is easily interpreted in terms of Fock-state
representation for the light-cone wave function of the incoming
hadron. The probability of giving a significant fraction of
the hadron momentum to one parton (soft or hard) is more
suppressed in the higher Fock states. Indeed, if one of the
participating partons gets a large momentum fraction x1 → 1,
all other participants are pushed into a small phase space
with x < 1 − x1. The measured parton distribution function
(PDF) is averaged over different Fock components, and
the interaction of these Fock states with the nuclear target
changes their weights, increasing the contribution of higher
Fock components, so that the projectile parton distribution
becomes softer, i.e., more suppressed at large x1 → 1. Thus,
the projectile proton PDF becomes target dependent, violating
QCD factorization at large x1, where the energy-sharing
(energy-loss) problem becomes important [66,67]. Such a
beam-target correlation breaks factorization, because it occurs
at a low scale. This explains why every process measured so
far was found to be nuclear suppressed at large x1 [66].

Glauber multiple hadron-nucleus soft inelastic interactions
are not sequential (as is frequently naively believed), but
correspond to multisheet configurations in the topological
1/Nc expansion of QCD for the inelastic amplitude, i.e., they
are related to simultaneous propagation and interaction in
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the medium of different projectile partons from a high Fock
component of the incoming hadron [68–72]. This leads to
the problem of energy sharing between participating partons,
which becomes especially severe at large fractional momentum
x1 carried by one of them. The associated nuclear suppression
was calculated in Ref. [66] by using the Fock state expansion,
weighted by the interaction with the target, corresponding to
the Glauber model. The suppression factor S(x1) for each
additional topological sheet was evaluated in Refs. [71,72] by
relying on Regge phenomenology, and in Ref. [66] by treating
it as a rapidity gap survival probability. Both approaches led
to the same result: at x1 → 1 suppression increases as S ∝
(1 − x1). We apply here the model for energy loss developed
in Ref. [66] in order to correct the nuclear ratio (17).

B. Perturbative energy loss

Another source of nuclear modification of the projectile
gluon distribution is an increased hard scale. Indeed, if in
pp collisions the gluon distribution is taken at the scale
Q2 = 4m2

c , a nuclear target generates another scale, known
as saturation scale Q2

s . So the effective scale of the process
increases, Q2

eff = 4m2
c + Q2

s . This follows naturally from the
interpretation of saturation in the rest frame of the nucleus,
which is related to broadening of the transverse momentum of
a gluon propagating through the nucleus [24],

Q2
s (B,x2) = �p2

T = TA(B) 9
4
�∇2σq̄q(r,x2)

∣∣
r=0. (39)

We employ the dipole description of broadening [73], and for
the saturation scale rely on the results of Ref. [24]. This result is
based on the approximation of Bethe–Heitler regime of gluon
radiation in multiple interactions, neglecting interferences of
gluons radiated in collisions with different nucleons. Effects of
coherence cause deviations from Eq. (39); however, according
to the discussion in Sec. V effects of coherence in gluon
radiation are small even at the energies of LHC. Therefore,
in what follows we employ the approximate effective scale
Q2

eff = 4m2
c + Q2

s for numerical evaluations.
Notice that broadening of the transverse momentum of a

gluon propagating through the nucleus is equivalent to the
effect of saturation in the kT -dependent PDF of the nucleus in
its infinite-momentum frame [74].

With a larger scale the process resolves more partons in
the incoming proton. Thus, via the effect of broadening the
nuclear target activates higher Fock states in the incoming
proton. The result is qualitatively similar to what we observed
above; namely, parton density will be enhanced at small x1, but
suppressed at x1 → 1. Such a nuclear modification of the gluon
density in the incoming proton can be performed by evolving
the projectile proton PDFs with Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equations from the scale Q2 = 4m2

c

to Q2 + Q2
s . Then the gluon PDF in the proton should be

replaced gN (x1) ⇒ g̃N (x1,B) in the numerators of R(1N) and
R(2N). Some examples of modifications, g̃N (x1,B)/gN (x1) are
shown in Fig. 6 for pPb collisions at

√
s = 5 TeV vs x1 and

impact parameter B.
This modification of the x1 dependence of the projectile

gluon distribution can be treated as an effective energy loss,
leading to nuclear suppression of heavy-quark production at

FIG. 6. Ratio of the projectile gluon distributions in p-Pb to pp

collisions at
√

s = 5000 GeV vs x1 and B. The projectile gluon
distribution, g̃N (x1,B) in pA collisions is DGLAP evolved from the
initial scale 4m2

c to 4m2
c + Q2

s , generated by the impact-parameter-
dependent saturation momentum Qs(B).

forward rapidities (large x1). The results presented in Fig. 6
show that the effect is extremely weak, only a few percent
suppression at very forward rapidities. The reason for this
weakness can be easily traced in Fig. 1 of Ref. [67]. One can
see that the effect of induced energy loss is controlled by the
relation between the scale of the process, Q2, and the saturation
scale Q2

s . The effect may be strong if Q2
s � Q2, but becomes

vanishingly small at Q2 � Q2
s .

Intuitively, this is pretty clear. It can be interpreted as a
vacuum dead-cone effect [75], namely a parton originating
from a hard process at scale Q2 is lacking gluon field with small
transverse momenta k2

T < Q2. Gluon bremsstrahlung and
medium-induced energy loss of such a parton are significantly
reduced compared with a nearly on-mass-shell parton. This is
what we see in Fig. 6, where the characteristic scale of the
process, Q2 ≈ 10 GeV2, exceeds considerably the saturation
scale.

Reduction of induced energy loss by a large genuine scale
Q2 of the process can be also interpreted in terms of the
Landau–Pomeranchuk effect, which says that, on a long length
scale l � RA, the radiation spectrum depends on the total
accumulated kick acquired by the charge, rather than on the
details of several kicks occurring on a short length scale (the
nuclear radius RA). The radiation spectrum dk2

T /k2
T leads to

a logarithmic scale dependence of the radiated energy. The
induced energy loss is given by a difference between energies
radiated in the processes with the effective scales Q2 + Q2

s (in
pA) and Q2 (in pp). Thus, the induced energy loss exposes
the following scale dependence:

�Eind ∝ ln

(
1 + Q2

s

Q2

)
≈ Q2

s

Q2
, (40)

if Q2 � Q2
s , i.e., it turns out to be suppressed. This effect is

of course included in the DGLAP analysis, whose results are
presented in Fig. 6.

Notice that the suppressing effect of a large scale of the
process was missed in the calculations [76] of induced energy
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FIG. 7. Ratio of p-Au to pp cross sections of J/ψ production at√
s = 200 GeV. The curves from bottom to top present numerical

results for the terms in Eq. (17) R(2N), R(1N), and their sum,
respectively. Gluon shadowing and nonperturbative and perturbative
energy-loss effects are included (see text). The data points are from
Ref. [4].

loss in charmonium production. As a result, the magnitude
of energy loss was grossly overestimated compared with the
DGLAP analysis.

C. Numerical results for J/ψ

Now we are in a position to finalize the calculations of
nuclear effects in J/ψ production. The effects of energy loss,
or modification of the projectile gluon distributions, have been
already incorporated into our previous results corrected for
gluon shadowing, as was plotted by the dashed curves in Figs. 4
and 5. The final results are compared with available data at√

s = 200 GeV in Fig. 7 and at
√

s = 5000 GeV Fig. 8. As was
anticipated, the energy-loss effects are strongest at the energies
of RHIC. A substantial modification of nuclear effects due to
energy loss has been already observed for other hard processes
in Refs. [77,78]. Our results seem to agree reasonably well with
data, especially taking into account the large uncertainties in
the pp reference, affecting the term R(2N) in Eq. (17).

In view of the forthcoming LHC measurements of pA
collisions at

√
s = 8000 GeV, we notice that our predictions

are hardly different from those presented in Fig. 8 for
√

s =
5000 GeV.

D. Nuclear modification of the pT distribution

Multiple interactions of the projectile partons in the
nucleus are known to lead to broadening of the transverse
momentum, the phenomenon also called saturation or color
glass condensate. It can be effectively evaluated within the
dipole phenomenology [73], well adjusted to HERA data on
small-x DIS. The value of broadening at impact parameter B
is given by Eq. (40) derived in Ref. [73].

R
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R
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R
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+R
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-4 -3 -2 -1 0 1 2 3 4
y

FIG. 8. The same as in Fig. 7, but for p-Pb collisions at
√

s =
5000 GeV. Data points are from Refs. [5,6]

Nuclear broadening of the pT distribution naturally leads
to a ratio RpA(pT ), rising with pT ; the effect is usually named
after Cronin. The pT dependence of the J/ψ production cross
section in pp, pA, and AA collisions is well described by
the form dσ/dp2

T ∝ (1 + p2
T /6〈p2

T 〉)6 [6,79,80]. Therefore,
making a shift of 〈p2

T 〉 for pA in comparison with pp
collisions, one arrives at a pT -dependent nuclear ratio [81],

RpA(pT ) = RpA

1

ξ

(
1 + p2

T

/
6
〈
p2

T

〉
1 + p2

T

/
6ξ

〈
p2

T

〉
)6

, (41)

where RpA in the right-hand side of Eq. (41) is the ratio of
the pT -integrated cross sections (as was calculated above);
ξ = 1 + �pA(x2)/〈p2

T 〉; and �pA(x2) = 〈p2
T 〉pA − 〈p2

T 〉pp is
nuclear broadening of charmonium transverse momentum.

The magnitude of broadening was evaluated in Ref. [24].
At

√
s = 5.02 TeV and the rapidity intervals of interest, y ∈

(−4.46,−2.96), y ∈ (−1.37,−0.43), and y ∈ (2.03,3.53) the
broadening magnitudes, averaged over impact parameters, are
0.35, 0.73, and 2.27 GeV2, respectively. The pT -dependent
RpA(pT ), given by Eq. (41), calculated with these values and
〈p2

T 〉 = 7 GeV2 [6] are compared with data in Figs. 9–11,
demonstrating good agreement.

VII. PRODUCTION OF ψ(2s)

The first radial excitation ψ(2S) has the mean radius
squared about twice as large as that of J/ψ [54,55,82],
and therefore comparison of nuclear effects for these two
charmonium states offers a sensitive test of the production
dynamics. Expectations are usually based on either of two
popular ideas, both of which are incorrect:

(i) The effect of color transparency makes the nuclear
medium more transparent for a smaller-size state, J/ψ , which
is expected to be considerably less suppressed than ψ(2S).
However, experiments at the CERN Super Proton Synchrotron
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FIG. 9. The pT -dependent ratio of the differential cross sections
of inclusive (but direct) J/ψ production in pA and pp collisions,
at

√
s = 5.02 TeV and y ∈ (−4.46,−2.96). Data points are from

Ref. [6].

(SPS) [2] and Fermilab [3] found similar magnitudes of nuclear
suppression for the two charmonium states.

(ii) At first glance, the observed similarity of nuclear effects
can be understood in line with the hierarchy of characteristic
length scales discussed in Sec. II A. Indeed, at high energies
the formation length (2) substantially exceeds the nuclear
dimension, so a perturbatively small c̄c dipole, rather than
a formed charmonium of much larger size, propagates through
the nucleus. Then one expects the dipole to evolve into either
J/ψ or ψ(2S) outside of the nucleus, after experiencing a
universal nuclear attenuation on the early perturbative stage.
Naively, one might expect universal nuclear suppression for
different charmonia. However, the dynamics controlling the
nuclear effects is more involved.

The second proposal (ii) explains why the first one (i) is
incorrect. Nonetheless, a universal nuclear attenuation of a c̄c
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FIG. 10. The same as in Fig. 9, but for y ∈ (−1.37,−0.43).
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FIG. 11. The same as in Fig. 9, but for y ∈ (2.03,3.53).

dipole does not lead to a universal charmonium suppression,
because the projection of the produced c̄c distribution function
to the charmonium wave function depends on the latter. In
particular, spectacular effects are expected for production of
ψ(2S) related to the specific shape of its wave function, which
has a node and changes sign as function of the c̄c separation.

Unusual features of ψ(2S) production were revealed in
photoproduction of charmonia [18], the process of a similar,
although simpler, dynamics compared with hadroproduction.
It was found that, in spite of its large size, the ψ(2S) produced
in nuclei may be less suppressed compared with J/ψ , and
sometimes even enhanced. This can be interpreted either in
terms of the multichannel generalized Glauber model [83],
or within the dipole description as a result of the specific
nodal structure of the ψ(2S) wave function [18,46,84]. The
c̄c distribution function, to be projected to the charmonium
wave function, has a rather wide r distribution, which peaks
at r ∼ 2/mc [8,84], close to the node position in the ψ(2S)
wave function. Therefore, a part of the overlap integral extends
beyond the node and contributes with a negative sign, causing
a significant compensation between dipole separations smaller
and larger than the node position. This cancellation contributes
to the observed suppression of ψ(2S) production [84] in pp
collisions. A nuclear target serves as a color filter, which
removes the large-size c̄c dipoles, and therefore the mean size
of the c̄c wave packet is reduced and the overlap with the
ψ(2S) wave function increases.

The results of calculations of the nuclear ratio RpA for
ψ(2S) are compared with available data at RHIC and LHC in
Figs. 12 and 13, respectively. The double scattering term R(2N)

turns out to be very small for ψ(2S) at the energies of RHIC,
but rises to a sizable corrections at higher energies.

Again, we can conclude that our calculations do not
contradict the data, which have rather large errors. However,
our results for the double ratio R

ψ(2S)
pA /R

J/ψ
pA , plotted in Fig. 14,

show rather small values slowly rising with energy. These
results contradict the precise data of the E866 experiment [3],
which shows that, at small xF , the double ratio is about
R

ψ(2S)
pA /R

J/ψ
pA = 0.9, with a small error.
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FIG. 12. Ratio of p-Au to pp cross sections of ψ(2S) production
at

√
s = 200 GeV. The curves from bottom to top present numerical

results for the terms in Eq. (17) R(2N), R(1N), and their sum,
respectively. Gluon shadowing, as well as the nonperturbative and
perturbative energy-loss effects are included (see text). The data point
is from Ref. [85].

The nuclear effects observed for the production of the first
radial excitation ψ(2s) demonstrate suppression, similar to
J/ψ , in the energy range of fixed-target experiments [2,3].
However, in the energy range of RHIC-LHC, a stronger
suppression of ψ(2s) relative to J/ψ was observed [85,86].

VIII. UPSILON PRODUCTION

The developed dipole description of charmonium produc-
tion in pA collisions can be naturally extended for bottomium
production, replacing the charm quark mass by mb = 4.5 GeV.
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FIG. 13. The same as in Fig. 12, but for p-Pb collisions at√
s = 5000 GeV. Data points are from Ref. [86]
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FIG. 14. The double ratio R
(2S)
pA /R

(1S)
pA as function of quarkonium

energy in the nuclear rest frame, EQ̄Q = M2
Q̄Q

/2x2mN . Solid and
dashed curves show the results of calculations for charmonium and
bottomium, respectively. Green full circles and squares show the
results of, respectively, ALICE [86] and LHCb [87] measurements
of R

ψ(2S)
pA /R

J/ψ
pA at

√
s = 5.02 TeV. The blue empty circle shows

the CMS result [88] for ϒ(2S)/ϒ(1S)pPb to pp double ratio at√
s = 5.02 TeV.

In Figs. 15 and 16 we present the results at the energies of RHIC
and LHC, respectively. The term R(1) closely reproduces the
earlier calculations in Ref. [8], except for the added energy-loss
effect, which affects the results for RHIC, but not for LHC.

Due to larger b-quark mass and smaller dipole sizes,
the two-nucleon term R(2N) in Eq. (17) is relatively small
compared with J/ψ production, as one can see in Figs. 15
and 16. As for charmonium, we calculate the pp reference
cross section used in the denominator of R(2N), within the
CSM, and adjust its normalization to data.
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FIG. 15. The same as in Fig. 7, but for ϒ production in p-Au
collisions at RHIC at

√
s = 200 GeV. The data point is from Rev. [89].
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FIG. 16. The same as in Fig. 15, but at
√

s = 5000 GeV.

The only available data point [89], plotted in Fig. 15, has
a too-large error bar to be considered as a support for our
calculations.

We also performed calculations for the double ratio
RpA(ϒ(2S))/RpA(ϒ(1S)), and plotted it as function of b̄b
energy in Fig. 14. This ratio was measured with a good
precision in the CMS experiment at

√
s = 5000 GeV and

|y| < 1.93 [88]. This point, plotted in Fig. 14 at energy
Eb̄b = eyMϒ

√
s/2mN , agrees well with our parameter-free

calculations.

IX. SUMMARY AND CONCLUSIONS

The main objective of this work was to settle the problem
of the energy independence of nuclear effects for J/ψ
production, observed in pA collisions. This independence
of energy is in striking contradiction with the steep energy
dependence of the dipole cross section observed at HERA,
which controls the nuclear effects. We revealed a mechanism
enhancing charmonium production at high energies, which
comes from the next order of the opacity expansion.

Crucial for the results was the choice of mechanism
dominating the production of heavy flavor vector mesons in pp
collisions. We favored the color-singlet model (CSM), which
can dominate the small-pT quarkonium production in which
we are interested. We developed a color-dipole formulation of
CSM, which is crucial for the calculation of nuclear effects.

The second-order term in the opacity expansion for the pro-
duction cross section is dominated by a different mechanism, a
double color-exchange interaction of the projectile heavy Q̄Q
dipole. Its contribution helps to reach agreement with data for
the nuclear suppression of J/ψ production both at the energies
of RHIC and LHC.

Other nuclear effects, gluon shadowing, and energy loss
have also been included. Gluon-shadowing corrections are
found to be important at the energies of LHC, but very small
at RHIC. On the contrary, energy-loss effects substantially
suppress quarkonium production rates at forward rapidities at

RHIC but have no influence at the energies of LHC. The main
contribution comes from the nonperturbative mechanism of
energy loss, which are related to the energy sharing problem at
forward rapidities. The perturbative energy loss generated by
pT broadening was found to be suppressed by the smallness
of the saturated momentum relative the scale of the process.
This suppression was missed in the previous calculations of
the energy-loss effect, which was grossly overestimated.

Although we restricted these calculations with the pT -
integrated cross sections, the pT -dependent ratio RpA(pT ) was
also evaluated, based on the known empirical shape of the
pT distribution and the value of broadening, calculated in a
parameter-free way (although not free of assumptions) within
the dipole phenomenology. The results, obtained for several
rapidity intervals, agree well with ALICE data.

Production of radial excitations, i.e., vector quarkonia
in the 2S state, has always attracted interest, related to
the nodal structure of the wave function. Differently from
photoproduction, where 2S states are enhanced compared with
the ground state, in hadroproduction we found a strong nuclear
suppression of the ψ(2S) to J/ψ ratio, in good agreement with
data. At the same time, for bottomia, the 2S to 1S ratio is nearly
unaffected by the nuclear effects, what could be anticipated
because the b̄b dipoles are much smaller compared with c̄c, so
the convolution with the ϒ wave function is less important.
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APPENDIX A: MULTIPLE COLOR-EXCHANGE
INTERACTIONS OF A HIGH-ENERGY DIPOLE

At sufficiently high energy, when the length scales dis-
cussed in Sec. II A considerably exceed the nuclear dimen-
sions, one can treat the transverse size of such a dipole as
frozen by Lorentz time dilation during propagation through
the nucleus. The kinematic constraints for this regime can be
found in Sec. II B. This is a perturbative stage of interaction,
so the one-gluon approximation for dipole-nucleon interaction
is justified. However, multigluon-exchange interactions with
different nucleons are enhances by powers of A1/3 and cannot
be neglected.

Evolution of c̄c density matrix

Multiple soft color-exchange interactions with the bound
nucleons keep the dipole transverse separation �r unchanged
but destroy the target,

c̄ icj + N → c̄ kcl + X, (A1)

as illustrated in Fig. 2. One cannot describe the dipole evolution
in terms of the dipole-nucleus amplitude, because in the

065203-14



SUPPRESSION VERSUS ENHANCEMENT OF HEAVY . . . PHYSICAL REVIEW C 95, 065203 (2017)

FIG. 17. Inelastic dipole-nucleon amplitude, squared and
summed over final nucleon debris.

cross section the final states of each color-exchange collision
must be summed up, as illustrated in Fig. 17. Therefore, the
dipole propagation in the medium is described in terms of
the density matrix k

l U
i
j (x1,x2; x ′

1,x
′
2), where x1, x2, x ′

1, and
x ′

2 are the transverse coordinates of the quark and antiquark in
the two conjugated amplitudes [23,26,27], which are presented
graphically in Fig. 18. We will follow the evolution of the
density matrix along the longitudinal coordinate z, which
measures the propagation of the system through the nucleus.

Before the c̄c pair enters the nucleus, i.e., at z → −∞, it is
in a pure colorless state, i.e.,

k
l U

i
j (�x1,�x2; �x ′

1,�x ′
2; z)|z→−∞ =�in(�x1 − �x2)|ij�†

in(�x ′
1 − �x ′

2)|kl ,
(A2)

where �in(r) is the distribution function of c̄c in the incoming
beam; for instance, a c̄c component of a projectile gluon.

At z → ∞ the system leaves the nucleus and the density
matrix can be projected directly to the final-state wave
function, ∫ ∏

n,m

d2xnd
2x ′

m
k
l U

i
j (�x1,�x2; �x ′

1,�x ′
2; z)

∣∣∣
z→∞

×�f (�x1 − �x2)
∣∣∣j
i
�

†
f (�x ′

1 − �x ′
2)

∣∣∣l
k
. (A3)

Since for every interaction of the c̄c in the medium we sum
up over the final states of nucleons, the density matrix is a col-
orless object, i.e., it is invariant under simultaneous rotations
in all color indices i,j,k,l. Therefore it can be conveniently
decomposed into the irreducible parts corresponding to singlet
and octet states of the pair,

k
l U

i
j (�r; �r ′; z) = S(�r; �r ′; z)PS + 1

8O(�r; �r ′; z)PO, (A4)

where z is longitudinal coordinate of the target nucleon;
�r = �x1 − �x2, �r ′ = �x ′

1 − �x ′
2. We assume here that the impact

parameters of the centers of gravity of the dipoles in the two
amplitudes coincide, which is correct if the dipole-nucleon

i

j

k

l

= x)
i
j

k

l
U (

FIG. 18. Graphical representation of the density matrix, describ-
ing color states of the interacting dipole.

interaction radius can be neglected compared with the nuclear
radius (see Fig. 19).

PS and PO in Eq. (A4) are the singlet and octet projection
operators,

PS = 1
3δi

j δ
k
l , PO = δi

l δ
k
j − 1

3δi
j δ

k
l , (A5)

such that

TrPS = 1, TrPO = 8. (A6)

The elements S(�r = �r ′) and O(�r = �r ′) are the probabilities
to find the quark-antiquark pair in color singlet or octet states,
respectively.

In the one-gluon-exchange model every interaction with
a nucleon results in the change of the density matrix k

l U
i
j ,

represented schematically in Fig. 19.
Explicit calculation of the diagrams gives the following

variations of the density matrices as function of z:

d

dz
S(�r,�r ′; z)

= [−�1(�r,�r ′)S(�r,�r ′; z) + �tr(�r,�r ′)O(�r,�r ′)]nA(b,z),

(A7)

d

dz
O(�r,�r ′; z)

= [8�tr(�r,�r ′)S(�r,�r ′; z) − �8(�r,�r ′)O(�r,�r ′; z)]nA(b,z),

(A8)

where

�1(�r,�r ′) = 1

2
[σq̄q(r) + σq̄q(r ′)], (A9)

�tr(�r,�r ′) = 1

8

[
σq̄q

( �r + �r ′

2

)
− σq̄q

( �r − �r ′

2

)]
, (A10)

�8(�r,�r ′) = 1

8

[
4σq̄q

( �r + �r ′

2

)
+ 14σq̄q

( �r − �r ′

2

)

− σq̄q(r) − σq̄q(r ′)
]
. (A11)

i

j

l

k

N N

+ − −
i

N N

j

l

k

1

2

i

j

l

k

i

j

l

k

i

j

l

k

N N

FIG. 19. Different unitarity cuts of the dipole-nucleon interaction cross section. The unitarity cuts are shown by dashed lines.
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If one is not interested in a particular spatial state of the
outgoing c̄c pair and regarding only its color state (e.g., one
does not discriminate between different outgoing colorless
states like J/ψ , ηc, χ , etc.), only the elements diagonal
in the space variables �x1 = �x ′

1 and �x2 = �x ′
2 of the density

matrix are relevant. Then for S(�r; z) and O(�r; z), which also
implicitly depend on b, one gets the following system of linear
differential equations:

d

dz
S(r; z) =

[
−S(r; z) + 1

8
O(r; z)

]
nA(b,z)σq̄q(r). (A12)

Here S(r; z) and O(r; z) are interpreted as the probabilities to
find the c̄c pair in a color singlet or octet state, respectively.
Since the total probability is conserved,

d

dz
[S(r; z) + O(r; z)] = 0. (A13)

Assuming that the initial state is a pure singlet with
distribution function Sin(r), and solving Eqs. (A12) and (A13),
one arrives at

S(r,z) = [
1
9 + 8

9e− 9
8 σq̄q (r)TA(b,z)

]
Sin(r),

O(r,z) = [
8
9 − 8

9e− 9
8 σq̄q (r)TA(b,z)

]
Sin(r). (A14)

Correspondingly, for a color-octet initial state one gets

S(r,z) = [
1
9 − 1

9e− 9
8 σq̄q (r)TA(b,z)

]
Oin(r),

O(r,z) = [
8
9 + 1

9e− 9
8 σq̄q (r)TA(b,z)

]
Oin(r). (A15)

We see that for large number of inelastic collisions of
the c̄c dipole,3 nc̄c

coll = σc̄c(r)TA(b,z) � 1, the probability of
production of color-singlet or -octet states approach universal
values, 1

9 and 8
9 , respectively, independently of the color
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FIG. 20. Feynman graphs for CSM of J/ψ production.

structure of the incoming c̄c pair. This could be anticipated,
since after multiple rotations in the color space both quark
become completely unpolarized in color. All of the possible
nine (3 × 3) color states of the c̄c are produced with equal
probabilities, and only one of them is a singlet, while the eight
others are octets.

APPENDIX B: J/ψ PRODUCTION IN pp COLLISIONS

The production of heavy quarks was described within the
dipole approach in Ref. [44]. In the leading order of pQCD
it is described by 15 Feynman graphs (Fig. 8 in Ref. [44]).
Only six of them, presented here in Fig. 20, contribute to the
production of J/ψ and its excitations.

1. Soft-gluon approximation

The amplitude corresponding to these graphs was derived
in Ref. [44] in the approximation of small fractional gluon LC
momentum αg � 1:

AgaN→ψgbX
abc (�kT ,�kg) =

√
3

2
idabc

∫ 1

0
dα

∫
d2bd2rd2ρ exp[i�kg · �ρ + i�kT · �b]�ψ (α,�r )

×
{
�c̄c

(
α

1 + αg

,
(

1 − αg

ᾱ

)
�r + αg

ᾱ
�ρ
)

�cg

( �ρ − α�r
ᾱ

)
γ

(
�b + (ᾱ − αg)α

ᾱ
�r + αg

ᾱ
�ρ
)

−�c̄c

(
α + αg

1 + αg

,
α�r − αg �ρ
α + αg

)
�cg

( �ρ + (ᾱ − αg)�r
α + αg

)
γ

(
�b − (ᾱ − αg)α

α + αg

�r + αg

α + αg

�ρ
)}

. (B1)

Here α and ᾱ = 1 − α are the fractional light-cone momenta of
the ψ , carried by the charm quark and antiquark, respectively.

3One should not mix up this value with the number of collision
usually used for normalization of hard reactions in pA and AA

collisions. The latter is controlled by σNN
in , rather than by the small

c̄c dipole cross section.

The relative transverse momentum and separation of c and
c̄ are �k and �r , respectively. We employ here the result of
Ref. [44] for the production of a colorless c̄c pair in S wave,
but projecting it to the charmonium light-cone wave function,
�ψ (α,�r ), normalized as

∫ 1

0
dα

∫
d2r|�ψ (α,�r )|2 = 1. (B2)
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The transverse momentum of ψ as a whole, pψ , is related
to the transverse momentum transfer to the target, �kT , and to
the transverse momentum �kg of the radiated gluon as

�kT = �pψ + �kg. (B3)

Further notations in Eq. (B1) are the transverse distances �b
between the target and the center of gravity of ψ − g, and ρ
between the ψ and radiated gluon.

The light-cone distribution function for a quark, radiating
a transversely polarized gluon with fractional momentum αcg ,
was derived in Ref. [19],

�cg(τ,ρcg) = 1

π

√
αs

3
ξ †
μQ̂cgξμ̄K0(τρcg), (B4)

where �ρcg is the transverse separation between the final
gluon and quark, and τ 2 = (1 − αcg)m2

g + α2
cgm

2
c . Notice that

the nonperturbative effects strongly affect this distribution
function, leading to a significant reduction of the mean
quark-gluon separation. The magnitude of this reduction is
constrained by the observed suppression of diffractive gluon
radiation [20], as well by many other processes [47]. Here we
rely on the perturbative form (B4) of the distribution function
but introduce an effective gluon mass mg ≈ 0.7 GeV, which
can be treated as a transverse mass of the gluon, which has a
transverse motion enhanced by the nonperturbative effects.

The indices μ and μ̄ in (B4) are quark helicities before and
after the gluon emission, and ξμ̄ and ξ †

μ are the spinors of the

initial and final quarks, respectively. The operator Q̂cg has the
form [19]

Q̂cg = imcα
2
cg�e ∗(�n × �σ ) + αcg�e ∗(�σ × �∇) − i(2 − αcg)�e ∗ �∇.

(B5)

The light-cone distribution function for the g → c̄c transition
is given by

�c̄c(ε, �R) =
√

2αs

4π
ξ †
μQ̂c̄cξμ̄K0(εR), (B6)

where

Q̂c̄c = mc �σ · �ei + i(1 − 2β)�σ · �n + (�σ × �ei) · �∇R, (B7)

and

ε2 = m2
c − β(1 − β)m2

g. (B8)

The fractional momentum β of the c quark emerging from
the incoming gluon (see Fig. 20) is different from that in
the final state due to gluon radiation by either c, or c̄ quarks.
Correspondingly, β = α/(1 + αg), or β = (α + αg)/(1 + αg),
as one can see in Eq. (B1). Gluon radiation also changes the
c̄c separation �R, which is different from the final �r , as one
can see in the argument of �c̄c in Eq. (B1). The c̄c distribution
function contains a proper convolution with a Clebsch–Gordan
coefficient 〈1M| 1

2 μ̄ 1
2μ〉, where M is the spin projection.

Following the definitions of Ref. [44], the function γ (b)
in Eq. (B1) corresponds to the Fourier image of the dipole-
destruction amplitude, which can also be treated as an elastic
(color-exchange) gluon-nucleon scattering amplitude. It is
related to the dipole cross section as

σ (r) =
∫

d2b|γ (�b + ᾱ�r) − γ (�b − α�r)|2. (B9)

2. The general case of arbitrary αg

A gluon, as a vector particle, is usually radiated at high
energies with a small fractional momentum αg ∼ 1/ ln(s).
However, in the process under consideration, the transition
of a c̄c pair from color-octet to singlet states, small αg values
are suppressed by color screening, and one should go beyond
this approximation, Eq. (B1), and rely on the general form of
the amplitude, where

AgaN→ψgbX
abc (�kT ,�kg)

=
√

3

2
idabc

∫
dαd2bd2rd2ρ

× exp[i�kg · �ρ + i�kT · �b]�ψ (α,�r )

×
6∑

n=1

ηnTr[�M�c̄c(εn,�rn)�cg(τn, �ρn)]γ (�bn). (B10)

The functions under the trace operation are here 2 × 2 matrices
in quark helicity space (helicity indices are dropped). The
matrix �M contains the convolution of spinors with the
Clebsch–Gordan coefficients from the wave function

�
μμ̄
M =

〈
1M

∣∣∣∣1

2
μ̄

1

2
μ

〉
ξμξ

†
μ̄

=
(

1 + σ3

2
,

σ1√
2
,

1 − σ3

2

)μμ̄

M=+1,0,−1

, (B11)

where σi are the Pauli matrices in helicity space. The multiplier

ηl = {1,1,−1,−1,−αG,−αG} (B12)

takes into account the ordering of ta matrices and a numerical
prefactor.

The functions �cg(τn,ρn) and �c̄c(εn, rn) are defined in
Eqs. (B4) and (B6), respectively. The contributions of different
graphs depicted in Fig. 20 to the amplitude are summed in
Eq. (B10). The fractional momenta αn and βn, as well as the
transverse separations �ρn and �rn, depend on the number of the
corresponding graph in Fig. 20.

It is assumed that at least one of the quarks is on
shell. The parameters εn, τn as well as arguments rn, rG,n
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FIG. 21. The cross section of pp → J/ψX, calculated with
Eqs. (B14) and (B15) in comparison with data from Refs. [4,57]
at

√
s = 200 GeV.

for different diagrams (1–6) in Fig. 20 are given by

ε2
1 = ε2

3 = m2
c − (ᾱ − αg)(α + αg)m2

g,

τ 2
1 = τ 2

5 =
(

αg

α + αg

)2

m2
c + α

α + αg

m2
g,

τ 2
3 = ε2

5

(α + αg)2
= ᾱg

[
αgm

2
c + α(ᾱ − αg)m2

g

]
(ᾱ − αg)(α + αg)

,

τ 2
2 = τ 2

6 =
(αg

ᾱ

)2
m2

c +
(

ᾱ − αg

ᾱ

)
m2

g,

τ 2
4 = ε2

6

ᾱ2
g

= ᾱ
[
αgm

2
c + α(ᾱ − αg)m2

g

]
αᾱg

,

ε2
2 = ε2

4 = m2
c − ᾱαm2

g,

�r1 = �r3 = �r5 = αᾱg�r − αg �ρ
αᾱg + αg

,

�r2 = �r4 = �r6 = − (ᾱ − αg + ααg)�r + αg �ρ
ᾱ + ααg

,

�ρ1 = �ρ3 = �ρ5 = −�ρ − (ᾱ − αg + ααg)�r
�ρ2 = �ρ4 = �ρ6 = −�ρ + αᾱg�r,

�b1 = �b + αg �ρ − αᾱg(ᾱ − αg + ααg)�r
α + αg − ααg

,

�b2 = �b + αg �ρ + αᾱg(ᾱ − αg + ααg)�r
ᾱ + ααg

,

�b3 = �b6 = �b − (ᾱ − αg + ααg)�r,
�b4 = �b5 = �b + αᾱg�r, (B13)

where ᾱg = 1 − αg .
The pT -integrated differential cross section of the inclusive

charmonium production, which describes the distribution over
ρ and r , can be expressed in terms of the dipole cross
section:

dσ (pp → ψX)

dyd2ρd2rd2r ′ = 9

8
g(x1)

∫
dαgdαdα′�∗

ψ (α,r)�ψ (α′,r ′)
6∑

n,n′=1

ηnηn′Tr[�M�c̄c(εn,�rn)�cg(τn, �ρn)]Tr[�M�c̄c(ε′
n′ , �r ′

n′ )

×�cg(τn′ , �ρn′ )]∗σq̄q(�bn − �b ′
n′ ), (B14)

where y is the charmonium rapidity, and x1,2 are defined in
Eq. (7). In the difference �bn − �b ′

n′ in Eq. (7) the b dependence
cancels, so the dipole cross section σq̄q in Eq. (B14) is function
of �ρ and �r .

FIG. 22. The same as in Fig. 21 at
√

s = 5000 GeV in comparison
with data [90].

The integrated cross section,

dσ (pp → ψX)

dy
=

∫
d2ρd2rd2r ′ dσ (pp → ψX)

dyd2ρd2rd2r ′ , (B15)

can be compared directly with data. Comparison with available
data from RHIC and LHC is shown in Figs. 21 and 22.

Although the calculations contain no free parameter ad-
justed to the data to be explained, there are theoretical
uncertainties related to the different approximations that had
been used. In particular, while the phenomenological dipole
cross section takes into account the effects of gluon saturation,
important at small x2 in one of the protons, we rely on a single
gluon approximation in the projectile gluon distribution, which
is justified only at large x1. Therefore the dipole description
is “asymmetric”, it is reliable only at sufficiently small x2, but
large x1, and vice versa, i.e., at forward-backward rapidities,
and in the central rapidity region it is least reliable.
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